e

U.S. Department
of Transportation

National Highway
Traffic Safet
Administratlon

DOT HS 808 247 December 1994

Final Report

Research on Vehicle-Based Driver
Status/Performance Monitoring;
Development, Validation, and Refinement
of Algorithms For Detection of Driver
Drowsiness

This document is available to the public from the National Technical Information Service, Springfield, Virginia 22161.

101711



This publication is distributed by the U.S. Department of
Transportation, National Highway Traffic Safety Adminis-
tration, in the interest of information exchange. The opinions,
findings and conclusions expressed in this publication are those
of the author(s) and not necessarily those of the Department
of Transportation or the National Highway Traffic Safety
Administration. The United States Government assumes no
liability for its contents or use thereof. If trade or manufac-
turers name or products are mentioned, it is because they are
considered essential to the object of the publication and should
not be construed as an endorsement. The United States
Government does not endorse products or manufacturers.



Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

DOT HS 808 247

4. Title and Subtitle 5. Report Date
RESEARCH ON VEHI CLE-BASED DRI VER STATUS/ PERFORMANCE

Decenber 23, 1994
MONI TORI NG DEVELOPMENT, VALI DATI ON, AND REFI NEMENT 6. Performing Organization Code
OF ALGORI THMS FOR DETECTI ON OF DRI VER DROWSI NESS VR SU | SE

8. Performing Organization Report No.

7. Author’s! W W Wer\M | | e L A El | SWO!‘I h VPI SU | SE 94_04

S. §. Wreggit ;

ot D Kirrgxg R. J. Fairbanks
9. Performing Organization Name and Address 10. Work Unit No. (TRAIS)
Vehicle Analysis and Sinulation Laboratory TRAI S
Virginia Polytechnic Institute and State University 11. Contract  or Grant No.
Bl acksburg, VA 24061-0118 DTNH- 22091- Y- 07266

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Thr ee- year Reporl
Ofice of Crash Avoidance Research Septenber 24, 1991 to
National H ghway Traffic Safety Admi nistration Decenber 23. 1994
400 Seventh St reet, SW 14. sponsoring Agency Code

Washi ngt on, DC 20590

15. 5Supplementary Notes

16. Abstract

This report summarizes the results of a 3-year research project to develop reliable algorithms for the

detection of motor vehicle driver impairment due to drowsiness. These algorithms are based on driving
performance measures that can potentially be computed on-board a vehicle during highway driving, such as
measures of steering wheel movements and lane tracking. A principal objective of such algorithmsis that
they correlate highly with, and thus are indicative of, psychophysiological measures of driver
dertness/fatigue. Additional objectives are that developed algorithms produce low false alarm rates, that
there should be minimal encumbering of (interference with) the driver, and that the algorithms should be
suitable for later field testing. This report describes driving simulation and other studies performed to
develop, validate, and refine such agorithms.

17. Key Words 18. Distribution Statement
Drowsy Driver Detection, Driver Performance| This document is available to the public
Mnitoring, Asleep-at-the-Weel, Crash through the National Technical Information

Avoi dance Count ermeasures, Driver Fatigue, | Service, Springfield, VA 22161
Driving Sinulation

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

219

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized




TABLE OF CONTENTS

Page

TABLE OF CONTENTS... .ottt ettt ettt st s s e eneeeseesseesnseeseesneeenseenseenneennseans iii
LIST OF FIGURES........oo ettt ettt s te et e s e e seeeseesseeense e seesneeenseenseesseeensennseas Xi
I DS I e N ] SO Xiii
ACKNOWLEDGMENTS.....c ottt ettt e e se e s se e snseeseesseesneeenseenseeaneeenseenneas XV
EXECUTIVE SUMMARY. ...ttt se et stee e steesseesteeseesseesseeaseessessnseenseessessnsesnseessenssenns XVii
CHAPTER ONE - LITERATURE REVIEW.........eeii e 1
INTRODUGCTION.....cctteiesie ettt e ste et esseesste e seesseessse e seeaseeenseeseessesanseeaseesseeanseenseennensnsenns 2
ACCIDENT SCENARIOS...... .ottt s e e et sse s s e sseesseessteenseessesssseeseessessnseenseessesansenns 3
REVIEW OF THE DROWSINESS LITERATURE.........ooee e 5
0 =S 0 S == o PN 10
Promising Physiological Measures Found in the LIterature...........cocevevereneneneneneneseeennne 12

Y= 1o ot [0 U T 12

EYE MOVEMENT ... e 13

LU o Lo Y TR 14

Brain WaVe CHIVITY......ccoiuiierierese ettt 15

SKIN POLENLIAl TBVEL ... 16

Heart rate Variability..........coooiiiiiii e 17

Pupil aperture Size variability ... 17

SECONAANY TASK IMEBSUIES. .....c.eiuiieieieeieeieeie ettt b e bbb bt saesnesaesre e 18
SUDJECHIVE RALINGS. ...ttt bbbt b e b bbb sbesnesaesre e 18
(@05 = 4V g = 1] 0 TR 18

Driving Performance Measures as Indicators of Driver DIOWSINESS.........ccoccvererenenesenennens 18

Lane related MEASUIES.........ccoieieeerererie et 19

Steering related MEBSUIES ........cceiiieieeeei ettt sae s 20

Heading/head rate/lateral acceleration related MeasUres...........ccvvveeerereneneseneneenne 21



Braking and acCeleration MEBSUIES...........coeiiririiieeerere e 22
CHAPTER TWO - EVALUATION OF DRIVER DROWSINESS BY
TRAINED RATERS: DEVELOPMENT OF AVEOBS

OPERATIONAL DEFINITION OF DROWSINESS.........cccoiiiiiiiieeieeeieee e 24
INTRODUGCTION ...ttt ettt st e sseessteesseesseesseeeseesseesseeeseessenanseanseesseesneeenseenses 25
I SRS 27

L (< T TP TSP PRSPPI 27

APPBIBLUS ...ttt h e a e e R e et R e e R ean e R e e e nr e ne e ne s 27

EXPErimental DESIGN ......ooiiiiiieieseee et a e sae e neene 28

Intrarater reliabDility........coooeieee e 29

=S (= C== A = T o /TS 29

Interrater reliabDility........ccoooiiei e 29

0o o (U] £ TR RRR 29
Experimental task PrOCEAUIES...........cciiriirerereresieeie e 30

1 | I SRS 32

Analysis of Intrarater REEDIHTLY ........coooeiiiiiieeeee e 35

Session 1 Correlation versus SeSSioN 2 COMTElatioN..........coeeerererereresesese e 35

Analysis of Test-Retest REI@Dility........cooeieireeeee e 36

Analysis of Interrater REHEDIHTLY ........cccoeiiiieeeeee e 36

ANalySIS Of ADSOIULE EFTON SCOMES.......couiiueeierieeiieieeieeieeeeee et ene e 38
DISCUSSION AND CONCLUSIONS.......oooiiiiiiieesieesee et estee s sseessee e enseessessneeeseesseesneeenseensens 40

INtErPretation Of RESUITS ........ccoiieie e snenne 40

CoNCIUSIONS Of the SEUAY .....cueieeeiirieieeicee e 40

INAICAIONS Of VAlIAITY......ouiiiiieiieiesere bbb nne 41
CHAPTER THREE -INITIAL DROWSINESS DEFINITION

EXPERIMENT: THE DEVELOPMENT OF NEWDEFE........cccoiiiiieieeeeeeiiee 44
VI (O 5 10 [ ] S 45



o= ot £ TR 47
APPBIBLUS.. ...ttt h e a et R e R R Rt e an e R e e nr e n e ne e 47
S T 0 (o TR 47
IBM-PC Computer and Metrabyte PIO-2 Logic Interface Card..........ccooeverenencnene 47

Win 486-33 Microcomputer and National Instruments AT-MIO-16
INEETACE CANd. ... s 50
S gl = L=t T L= R 51
Ear plethySmMOgraph ..........coooiiii e 52
Closed CIFCUIT tEIEVISION .....c.eieiiiiieieeeee e 52
SUDJECHIVE FaliNG AEVICE.....c..eieieiiieere e 53
EXPErimENtal DESIGN ..ottt bbb a e nenne 53
0o = o (U] £ PR 54
SUDJECE PrOCEAUIE.........eeeiieeeeieeteet ettt besae b saesaesrenneas 54
Experimental task PrOCEAUIES............ciiiirerererierie e 56
DL e 1Y = 0T o 1B = (o o TR RRRR 59
DAt ANAYSIS OVEIVIEW .....c.eeiieiiieieeeie sttt sttt st be e besaesbesbesbesbesbesbesaesaesaesnesneas 62
COrrelation @NAIYSES........coereriirieeiere ettt reene s 62
Multiple regreSSioN @NAIYSES. .....ccooi it 63
1 | I SRS 64
Correlation ANAlYSES RESUILS........coueiiiiiieeeseee e 64
Regression ANAlYSES RESUILS.......c.oiiiiiiie e 64

DISCUSSION 69
CHAPTER FOUR - DEVELOPMENT OF DRIVER-DROWSINESS

DETECTION ALGORITHMS ... 70
INTRODUCTION. ...ttt r e s s r e resr e r e s r e r e resreerenneenenrenrennis 71
A I 5 TP 74



APPBIBLUS. ...ttt h e h e e R et e n e R e R e nan e R e e r e e ne e ne e s 74
0 T 0 o TR 76
Video recording EQUIPMENT........c.ceerereeeeeeeeee e aesaesneenas 76
LinEar POLENTIOMELEY .........oouiieiierie ettt sae e aesae e 77
Steering wheel controlsfor SUDSIdiary task.........coeeerereninienenereee e 77
Win 486-33i microcomputer and analog-digital interface card..........c.ccoceeerencncnnenne. 77
Electrodes and plethySMOgraph...........c.ccoeeeierineneieee e 78
EXPErimENtal DESIGN ..ottt bbb a e nenne 78
0o o (U] £ TR 83
SUDJECE PrOCEAUIE.........eueitieeieieeteet ettt aesreeaesaesaenneas 83
EXPErimental T8SK........coeiiiiiee e 85
DAt ANAYSIS OVEIVIEW .....c.eeiiiiiiiieeeie sttt sttt ae st besaesbesbesbesbesbesbesaesaesaesnenaens 86
1 | I SRS 94
MUILIPIE REGIESSION......c.eiiiieeerie ettt sttt ae e b e aesbesbesbesbesbesbesaesaesresnennens 9
DISCHMINGNE ANBIYSES........oitiiiiieiieie ettt b e bbb b e besbesbesbesaesaesresneas 99
DISCUSSION and CONCLUSIONS........ooieieiiesiesiesieeee e ee st ete s sae e aesre e se e essessaensesneensesneenns 105
Models Including Heart Measures Versus Models Not Including Heart Rate
IMTEAISUIES.......ceeeeeeeesie ettt et m e s e e s e s s e sae e e n e e s me e snneeneeane e e 105
Models Including A/O-Task Measures Versus Models Not Including
AJO-TASK IMBASUIES........ueeueeuieieeieeieeeeee ettt se e ae e s e s e st e sessessessessesresresnenneas 105
L@ N VT TR 106
CHAPTER FIVE - VALIDATION OF PREVIOUSLY-DEVELOPED
DROWSY-DRIVER DETECTION ALGORITHMS.........oi i 108
INTRODUGCTION ...ttt ee et ste e e eeeteesseesseeeseesseeeseeeseeasesanseeseesnessnseenseessensnsenns 109
0 I o OSSR 111
SUBJECES. ....voveeveeeeeeeee e se e sss s s s s es s e es s nssnssee e ens e senn s sene s eenn e senees 111

Vi



Y 0] 0= = LU SO P R RPPR TR 111

0 T 0 (o TR 111
L 1= g1z D= o o BT 112
00 o (U] = TR 112
EXPErimental taSK........coiiiieiieriee s 112
DAt ANAYSIS OVEIVIEW .....c.eiiiiiiieieeie ettt sttt sb bbbt bbb sbesbesbesaesaesbesnesne e 113
VALIDATION RESULTS: DRIVER-VEHICLE PERFORMANCE
MEASURES ONLY....oititiieeiiesie ettt et e e sse s e sseeenseesseesnessnseesseesnenenseensens 118
Application of AlQorithmStO NEW Data.........ccccvrerererirereeeeeeer s 118
VALIDATION RESULTS: INCLUSION OF A/O TASK
PERFORMANCE MEASURES ...ttt 127
Models Containing A/O Task Performance MEasUres...........cccoererereneneneneseseseseseeee 127
Application of Algorithms (Employing A/O Task Measures) to New Data...........ccoceeueneeee. 127
DISCUSSION AND CONCLUSIONS OF VALIDATION PHASE ..o 136
Validation of Algorithms Using Driver-Vehicle Performance Measures............cccoceeeerennenne. 136
The Effects of Cruise Control and A/O Task on Detection Rate of
Driver-Performance Measure Algorithms............ccocooiiiiiininnneeeeeeeee 136
Validation of Algorithms Containing A/O Task Performance Measures...........cccceeeeeeennenne. 137
L@ VT R 138

CHAPTER SIX: ADDITIONAL ANALY SES OF THE ALGORITHM
VALIDATION DATA -- SSIMULATOR STUDY OF THE
EFFECTS OF CRUISE CONTROL, SECONDARY TASK,
AND VELOCITY-RELATED MEASURES ON DRIVER

DROWSINESS AND DROWSINESS DETECTION.........coiiiiiniiieeeeeeeeeeeiee 140
INTRODUGCTION ...ttt e et e st e s e teesseesseeeseesseesseeeseessesaneeenseessessnseenseessenssenns 141
Y I o PSSR 143

0 o= ot £ TR 143

Vii



APPAIBLUS ...ttt s e R e e R R e e R e e e nar e ne e eneene s 143

L Tl g1z D= o o B 143
00 o (U] = TR 144
SUDJECE PrOCEAUIE ...ttt be s reene e 144
EXPErimental T8SK........coeiiieiiiee s 144
DAt ANAYSIS OVEIVIEW ....o.eiiiiiieeieite ettt sttt be st ae s ae bbb besbesaesaessesaesne e 145
e | OSSR 147
UNEQUAI N7 SANGIYSES ...ttt ae b b e b b e besae b eaesneene e 147
COrrelation ANBIYSES .....cc.oiuiieieieeeet ettt ae e bt sbe b e aesbesbeebesaesrenaenaeas 148
ANBIYSES OF VAITANCE. ...ttt a et ae b aeeneenas 148
MUILIPIE REGIESSION......c.eiiiiiitesie ettt sttt b bbbt bt be b e sbeeaesbeeaesaeeaesneenees 152
DISCUSSION 161
Speed Variability VS, DIOWSINESS.......ccccoiiiririireriesesie et sresae s saesneas 161
Velocity Related Measures as Indicators Of DIOWSINESS.........cooerererereneneneseeeses e 162
Cruise Control, Secondary Task, and Time Interval vs. Drowsiness and
[0 To s N = o oo RN 162
Detection Models Including Vel ocity-Related Measures vs. Detection
Models Not Including Velocity-Related MEasUres..........cocovererereneneneneseseeienes 163
CONGCLUSIONS......coctiisieieisieteesie ettt se st e e s es e e saesesesae s e e ssese e ssesesessesesessesanessnsanensnsenenen 164

CHAPTER SEVEN, PART ONE -- FURTHER ALGORITHM REFINEMENT
AND INVESTIGATION - EFFECTS OF USING HIGHER-ORDER

ALGORITHMS ON DROWSY DRIVER DETECTION ACCURACY........ccccueenne 165
INTRODUGCTION ...ttt ee et sae e eeeteesseesseeeseesseeeseeeseeasesanseenseessessnsennseessensnsenns 166
Y I SO 167

D e N 7= Y S TR 169

MUILIPIE FEOIESSION ...ttt ae e saeenas 169
Y 11 - S 171

viii



“CHPPEA" RVAIUES.....cceeeieceesieeese ettt ne e sneennas 171

ClasSifiCatioN MELMCES.......ccerererieeieriesie e aesne e 171

e | OSSP 173
MUILIPIE REGIESSION......c.eiiiiiiteeie ettt sttt b e bbbt b e b e sbeeaesbeeaesaeeaesnenne e 173
Pearson-Product-Moment Correlation (R) VaUES..........cccereiiriiineicneeeeees e 173
“Clipped” Algorithm Output PERCLOS VAUES.........cccoeieriririierereseeesesesiese e 176
ClasSifiCatiON MBIICES ........coererieeieeiceieeie ettt ae e b b s be b sbesaesresaesneas 176
DISCUSSION AND CONCLUSIONS.......ooceeieeiieeieeriee e seeesseesee e esseessesseeesseesnessnseenseessessnsenns 177
INtErpretation Of RESUITS ........cciiiiee e 177
Stahility of algorithms when. applied to new subject data............ccooerereneninencnnene 177

Effect of higher order algorithms on accuracy of prediction ...........ccccooveieenciencnne. 177

(O 0 11 £ TR 177

L0003 Tox [0 L] 0 LSRR 178

CHAPTER SEVEN, PART TWO -- FURTHER ALGORITHM
REFINEMENT AND INVESTIGATION -- A COMPARISON
OF RVALUES OBTAINED FROM THE APPLICATION
OF ALGORITHMSTO ORIGINAL A/O DATA, NEW A/O

DATA, AND NEW CLIPPED A/O DATA ...ttt sttt e et s 179
INTRODUGCTION.....ctitieeie ettt se et see et ste e eeeteesseesseeeseesseeesseeseeasesanseenseesnessnseenseessessnsenns 180
Y I SRS 181

Dt N 7= Y S TR 181
RESULTS AND CONCLUSIONS........oooiiiiieeieesiee e rtee e eeesse e s s seeesseessessneeesseessessnseensesssessnsenns 182

CHAPTER SEVEN, PART THREE -- FURTHER ALGORITHM

REFINEMENT AND INVESTIGATION -- AN INVESTIGATION

OF FALSE ALARM RATESWHEN APPLYING DETECTION

ALGORITHMS TO ALERT-DRIVER SEGMENTS.......coiiiereeereresesee e 184
INTRODUCTION. ... .ot r e s s s sresr e r e s resresresrennennesrennenreas 185



IMETHOD ...t r e r e R e e r e er e er e r e e renrennenrennennenrennenre s 186

Dt N 7= Y S R 186
RESULTS AND CONCLUSIONS........cooiiiiieetesiie e ertee e see e e s s seeesseessessneeesseessessnseenseessessnsenns 187
CHAPTER EIGHT: SUMMARY OF FINDINGS AND

RECOMMENDATIONS......ceeee ettt e e seeese e seeeneeenseesneeenanenseenneas 189
L I (O 5 1 L 1 [ ) PSS 190
MAIN FINDINGS.......coe ettt et st e et e s e s reeeseesseeeseeenseeaseesneeeseesneeenseenseenseesnsenns 191
RECOMMENDATIONS ...ttt ettt e e te e s e e neeeseesseseneeeseesneeanseenseesnensnseans 196
REFERENCES198
Appendix A: Regression Summaries and Classification Matrices for

Selected AlGOITTNMS..........oiie e e ene s 206



N

13:

14:
15:

16:

17:

18:

19:

LIST OF FIGURES

Page
PrOJECT OVEIVIBW ...ttt b et b e bt b e b e bt s besbeebesbesbesbesbesaeenenneas XViil
Comparison of EYEMEAS Vaues for Two Experiments with
SHAT-TIMES ALIGNEA ... b b saeenas 11
Raw Rating Scores as a Function of Segment Mean Rank............ccccooiiniinnininenenenne 33
Mean Rating Error asaFunction Of ODSEIVEY ... 37
Mean Absolute Rating Error as a Function of OBSEIVEr ... 39
Equipment Arrangement for Definitional EXPeriment...........cocooeveierenenencneneseseseseseniens 48
Example of aMathematical Task (as it appeared on the Smulator Screen).........cceceveeeeerennene 57
Example of a Letter Search Task (asit appeared on the SmMulator SCreen).........cceeeveeererennene 58
Multiple Regression/Discriminant AnalysiS ODJECHIVE...........cccviiiiinineienereeeeeeee 72
Peripheral Equipment Used for Algorithm Development ... 75
Pre-Analysis Data Manipulation ProCEAUIES............ccoiiiririnencne e 87
Block Diagram of the Main Stepsin the Algorithm Development
0o s o (U] £ TSR 89
PERCL OS Data With Upper and Lower Criterion Linesfor Three
Categories and Single Criterion Line for TWO CalegOriEs. .......ccovrerererererenenesesieseeseseeeees 91
Scatterplot of PERCLOS Data Shown With Regression SUMMary.........ccoeeeeeeeeesesesenennes 97
Classification Matrix Generated From Multiple Regression Analysis of
PERCLOS DELA......cccteeiuieeieesiie et esieestieseeesseessesseeesseesseseseesseessseeseessessssssasesssessnsesnseessessnsenns 98
Pre-Anaysis Data Manipulation ProCEAUIES............ccoeiiiirininere e 114
PERCLOS Data With Upper and Lower Criterion Lines (New Data)...........c.ccooeeeerereruennene 115
Average R Vauesfor Ten Algorithms Applied to Original Data, New
Data, and Four Conditions From the NewW Data...........c.cceerererirenenenenesese e 120
Scatter Plot of PERCLOS Data -- Predicted vs. ODSErVEd..........ccoevviereienineseeeeeceee 122

Xi



20:

21:

22

23

24:

25:

26:

27

28:

29:

30:

Classification Matrices Showing Accuracy of Algorithm D4a When

Applied to Original Data (Upper) and New Data (LOWEN)........ccooerererereneneneeeseeeeeeeees 123
R Vauesvs. New Data APAR Vaues -- APAR Includes All

Misclassifications (Upper Graph) and Large Misclassifications

(@0 NV (e T g r="o] ) R 126
PERCL OS Data With Upper and Lower Criterion Lines (New Data
DN o AN L@ I 1= S 2 TR 128

Average R Vauesfor Eight Algorithms Applied to Original A/O Data,
New A/O Data, New A/O Data With Cruise Control Engaged, and New

A/OOQO Data Without Cruise Control ENGageQ...........cooueirererererereeesesesesesese e 130
Scatter Plot of PERCLOS Data -- Predicted vs. ODSErVed..........ccooviiiineneneieneseseeeeeee 132
Classification Matrices Showing Accuracy of Algorithm J4aWhen Applied

to Original Data (Upper) and New Data (LOWES)........coerererereneneniesesie e 133
R Vauesvs. New APAR Values -- APAR Includes All Misclassifications

(Upper Graph) and Large Misclassifications (Lower Graph)...........cccceeoererenienienieniencnennenn 135

Comparison of Regression Lines for (a) Combined, (b) A/O task, and

(o) I O J =" g D= = TR 150
Case 1 and Case 2 Algorithm Comparison -- Multiple Regression Rests

(Independent Variables Included Steering, Accelerometer, and Lane

Measures. FVELSD Included in Case 2 ONlY.) ... 158
Case 1 and Case 2 Algorithm Comparison -- Multiple Regression Results

(Independent Variables Included Steering, Accelerometer, and Lane

Measures. FACCSD Included in Case 2 ONlY.)......cocoieiiiirenineresesiese e 159
Case 1 and Case 2 Algorithm Comparison -- Multiple Regression Results

(Independent Variables Included Steering, Accelerometer, and Lane

Measures. PEDDEV Included in Case 2 ONlY.) ..o 160

Xii



w

o N o g &

10:

11:

12:

13:

14:

15:

LIST OF TABLES

Page
Eye Measure vs. Lane Measure COrrEl@tionS...........ccoererererinenesesesesese s 7
Impairment Detectors Based on Correlation ANAYSIS.........coeviriiireneneneneseseses e 8
Drowsiness Impairment Discriminant Analysis. Six-Minute Interval
D ol =S = R 9
Correlations of Rater Drowsiness Ratings with Other Indicators..........c.cooveenenienincncncnene. 43
Summary of the Six-Minute Correlation RESUILS..........ccoceriiiririneneeeeeeee e 65
NEWDEF Regression Tabl@........c.ooiiiiiiiiee et 66
Summary of REgreSSION ANAIYSES. .....ccoiiiiriiiereee et 68
Sets of Measures Used in Multiple Regression andDiscriminant
Analyses for Each Dependent MEBSUIE...........coouiirerireneeeeeeee e 93
Summary Table of Multiple Regression Analyses Results Showing
Y= LTSS 95
Summary Table of Two Category Discriminant Analyses Results
SNOWING APAR ...ttt a e be e beebeebe b e sbesbesresresaenneas 100
Summary Table of Three Category Discriminant Analyses Results
Showing APAR For All ClassifiCation EFTOrS.........coccueiererirenenenesesesese s 101
Summary Table of Three Category Discriminant Analyses Results
Showing APAR For Large ClassifiCation ErTOrS..........ccooeuerereriienienenenesesesesiese e 102
Comparison of Apparent Accuracy Rates for Thresholded Regression
Models and Corresponding Discriminant AnalySISMOAELS...........ccooirinenneneneseneee 104
Summary Table of Multiple Regression Results (Calculated in the
Development Phase) Showing Algorithms Used for Validation...........c.ccoccveveieneniencncnnne 116
R Vaues From Multiple Regression Analyses of Original Dataand
R Vaues Achieved After Application of Algorithmsto New Data............cccceeerererencncnnene 119

Xiii



16:

17:

18:

19:

20:

21:

22

23

24:

25:
26:

27
28:

29:

APAR Summary Table Generated from Classification Matrices of

Original and New Data -- Including All Misclassifications and

Large MiSClasSifiCaliONS........cceiiiiieierere et
R Vaues From Multiple Regression Analyses of Origina A/O Dataand

R Vaues Achieved After Algorithms Were Applied to New A/O Data..........cccceeeererereennene
APAR Summary Table Generated from Classification Matrices of

Original and New A/O Data -- Including All Misclassifications and Large

T e =SS o= o] TR
Summary Table of Correlation ANAIYSES........cociiiiririieeee e
Summary Table of ANOVA RESUILS........coeiiriereierereeeeees e
Summary Table of Multiple Regression Analyses Results Showing R

Valuesfor Forward Velocity Standard Deviation (FVELSD).......cccooririnenieneneneneeeeee
Summary Table of Multiple Regression Analyses Results Showing R

Values for Forward Acceleration Standard Deviation (FACCSD).......c.ccoeerererienenenenenenes
Summary Table of Multiple Regression Analyses Results Showing R

Valuesfor Accelerator Pedal Movement Standard Deviation (PEDDEV)........cccccooverennenee.
Summary Table of Multiple Regression Analyses Results Showing R Values

for All Velocity-Related Measures (FVELSD, FACCSD, and PEDDEV).........c.cccceeeeennenee.
Summary of Variable Groups Used in Algorithm Development..........ccocooevieneninicnicnennns
Multiple Regression Summary for Algorithm 1 -FULL and Dependent

VariabDI@ PERCLOS ... .ottt b et a et aesaeenesnesaeeaeeneenas
SUMMEANY OF RESUITS.......cuiieiieeeeeeesee e saenne s
R Values From Multiple Regression Analyses When Algorithms

were Applied to Original A/O Data, New A/O Data, and New

(O[T oo 1< o AN L@ I D - R
Classification Matrices with Awake Data Only -- Demonstration of False

F 0 T (TR

Xiv



ACKNOWLEDGMENTS

The authors wish to thank Dr. Ron Knipling of NHTSA, who served as the contract
technical representative. Dr. Knipling contributed many suggestions throughout the project
and also provided results from his accident data base studies for inclusion in the first semi-
annual research report and in experiment planning. In addition, Dr. Knipling handled
contractual matters promptly, efficiently, and constructively.

The authors also wish to thank Michael Perel, Dr. Michael Goodman, Robert Clarke,
and William Leasure of NHTSA for helpful suggestions throughout the project. Mr. Leasure
additionally made it possible for the authors to present the results of the research to large

technical audiences both in Europe and the United States.

XV



EXECUTIVESUMMARY

The purpose of this report isto summarize the results of athree-year study in which
the main objective was to devel op reliable agorithms for the detection of driver impairment
dueto drowsiness. More specificaly, the goal of the research was to develop the best
possible algorithms for detection of drowsiness, based on measures that could be computed
on-board inavehicle. Additional objectiveswere that devel oped algorithms would produce
low false alarm rates, that there should be minimal encumbering of (interference with) the
driver, and that the algorithms should be-suitable for later field testing. This report describes
the various studies that were performed to develop, validate, and refine such algorithms.
Included are chapter summaries of the six preceding semi-annua research periods,
summaries of additional supplemental research, and remarks concerning future research in
regard to implementation of afull-scale driver-drowsiness detection and aerting system.
Because of the large amount of research and documentation generated during the three year
period, this report necessarily represents an overview. Ordinarily, this document would have
been called afinal report. However, the project has been extended, Therefore, to avoid
confusion, thisreport iscalled a“ Three-Y ear Report.”

Thisreport is comprised of eight chapters. The first six correspond to summaries of
the six semi-annual research periods, as shown in Figure 1. The seventh chapter describes
three additional analyses performed late in the project that were directed at further refinement
of algorithms and gathering of additional information about their effectiveness. The eighth
chapter consists of afinal summary of findings and recommendations. The remainder of this
executive summary provides abrief description of each chapter of thisthree-year report.
Chapter One (First Semi-Annual Research Period; Wierwille, Wreggit, and Mitchell, 1992)

This chapter contains a brief review of motor vehicle accident data bases for
characteristics of drowsy driver accident scenarios and areview of the drowsiness related
literature. There were three specific objectives in performing this review. Thefirst was to

provide information about scenarios most likely to lead to drowsiness-related accidents. The
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second was to determine which operational ly-obtainable measures are believed to covary
with the level of drowsiness, and the third was to determine how drowsiness level should be
defined. All of these information gathering tasks were directed at developing the best
experimental plan for drowsiness detection algorithm devel opment.

Chapter Two (Second Semi-Annual Research Period; Wierwille and Ellsworth, 1992)

One of the findings of the literature review was that insufficient information existed
on defining the level of drowsiness of driversin apractical way. Therefore, effortswere
directed toward the development of an operational definition based on ratings by informed
observers (persons familiar with the behavior of drowsy individuals). For this study,
informed observers were to rate the drowsiness level of drivers based on videotaped facial
images. Such videotapes already existed from previous experiments and could be used for
this preliminary definitional study. The experiment used six behaviorally trained raters
who received a“drowsiness definition” statement and arating scale. After reading the
drowsiness definition statement they performed ratings of48 segments of driversin various
stages of drowsiness.

Factors considered in the data analysis were test-retest reliability, inter-rater reliability,
intra-rater reliability and sensitivity. It was determined that agreement between raters and
within raters was quite good and reliability levels were quite high. Thus, observer rating or
averages of observer ratings can be used to define the level of drowsiness of driverson a
minute-by-minute basis.

Chapter Three (Third Semi-Annual Research Period; Ellsworth, Wreggit, and Wierwille,
1993)

This study also focused on defining the level of drowsiness of drivers. While its main
purpose was the devel opment of one or more additional definitional measures, it aso allowed
the preliminary check of hardware needed for the detection algorithm devel opment experiment

that was to follow.
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The fundamental concept of this study was to attempt to use a“blend” of eye-closure
and other physiological measures to predict performance in cognitive tasks. If such ablend
could predict performance under a variety of apparent drowsiness levels, then it could serve as
an alternative definition of drowsinesslevel.

Eight sleep deprived subjects performed two interleaved (non-driving) tasks, one being a
lower level cognitive task (simple visua search task), the other being a higher level cognitive
task (mental arithmetic). By exposing the subjects to these two tasks, it was possible to
determine performance decrements in both lower-level functions and higher-level functions.
All subjects had been awake for at least 17 hours before the experiment began.

Results of the experiment showed that a good definition of drowsiness level (as defined
by performance decrements on the tasks) could be obtained by combining eye closure,
el ectroencephalogram (EEG), and heart rate measures in a linear multiple regression model.
These measures would not be difficult to obtain in an automobile simulation since they can be
obtained without discomfort or intrusion. Therefore, a regression model could be used as an
alternate definition of drowsiness level.

Chapter Four (Fourth Semi-Annual Research Period; Wreggit, Kim, and Wierwille, 1993)

This study was directed at the central objective of the project, namely, at developing a
wide variety of usable algorithms for detection of driver drowsiness. The dependent measures
in this study were definitional measures of drowsiness that were not considered to be
operationally obtainable in an actua vehicle. The independent measures in this study were
operational measures that would be obtainable in an actual vehicle. The objective was to find
optimum combinations of independent measures that would best predict levels of drowsiness.

The independent measures collected during this study included driving-related
measures, driver-related measures (determined by Ellsworth, Wreggit, and Wierwille, 1993),
and secondary task performance measures. The various measures were used to create
agorithms for the detection of drowsiness while driving. The detection algorithms were

devel oped through the use of multiple regression analyses.
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The dependent measures collected during the study included two eyelid-closure
measures, the average observer rating developed by Wierwille and Ellsworth (1992), and an
operational definition of drowsiness developed by Ellsworth, Wreggit, and Wierwille (1993).
A measure that was comprised of the standardized sum of the above dependent measures was
also used as an operational definition of drowsiness.

Twelve sleep deprived subjects drove an automobile simulator from approximately
12:30 A.M. to 3:00 A.M. Four subjects performed a secondary task, four subjects
manipulated dash controls, and four subjects simply drove.

The secondary task (“ A/Otask”) consisted of atask that involved an auditory
presentation of simple words every fifteen seconds. If the presented word contained an “A” or
“O' the subject was to press the button labeled “ YES’ located on the steering wheel. If the
presented word did not include an “ A" or “O’ the subject was to press the button labeled “ NO”’
located on the steering wheel. Thistask demonstrated performance of low cognitive-load
tasks.

The task of manipulating various controls on the instrument panel involved following
auditory commands to adjust radio controls, push buttons, and vertical slide controls every
eight to ten minutes. The manipulation of the controls by some of the subjects was for the
reason of introducing factors that may be experienced by drivers on an actual roadway.

Performance measures, behaviora measures, and physiological measureswere
collected and analyzed through the use of multiple regression-and discriminant analysis.

These measures consisted of the five dependent measures (definitions of drowsiness) and
thirty-three independent variables. Multiple regression analyses were undertaken to determine
which independent variables were significant predictors of drowsiness. Discriminant analyses
employed the sets of independent variables that were found through multiple regression to be
significant predictors of drowsiness. The results showed that multiple regression was as
accurate as discriminant analysis in classifying levels of drowsiness. Since multiple

regression analysis does have some inherent advantages over discriminant analysis when



dealing with detection algorithm development and use, it was decided that all algorithms
would be developed using multiple regression techniques. Analyses were then undertaken to
determine which independent variables were significant predictors of drowsiness.

Typical agorithms contained four to seven measures and corresponding coefficients
(weightings). A typical good algorithm consisting of steering-related, lateral accelerometer-
related, and lane-related measures produced an R value of 0.87. (See Figure A8, Appendix
A.) The R value indicates the correlation between the actual drowsiness measure and the
algorithm output (predicted measure). An accuracy rate of 79% was attained when all
misclassifications were considered (i.e. observed alert, questionable, and drowsy segments
being classified in any erroneous category) and a 98% accuracy rate was attained when only
large misclassifications were considered (i.e. observed alert segment being erroneously
classified asdrowsy or vice versa). Thus, large misclassification error rates of 2% to 3% are
likely to occur. Classification accuracy rates attained during the algorithm devel opment study
and subsequent algorithm validation study reflect accuracy rates for algorithms when applied
to partialy sleep deprived driver-subjects. It is believed that false alarm rates would be lower
for alert drivers because, if the level of actual drowsinessisvery low (driversare dert), the
detection-algorithm output will not (in a great majority of cases) erroneously exceed the
predetermined “impairment threshold.” In other words, the actual level of drowsinessin an
aert driver will be so far from threshold that it is unlikely that a misclassification would
occur.

To further minimize false alarms, a two-stage detection system could be used. The
first stage would detect probable drowsiness based on driver and vehicle related measures, and
the second stage would further discriminate using a secondary task.

Chapter Five (Fifth Semi-Annual Research-Period; Wreggit, Kim, and Wierwille, 1994)

This experiment was conducted with the primary purpose of algorithm validation, that
IS, determining algorithm classification accuracy for datafrom anew set of driver-subjects.

While estimates of agorithm accuracy were obtained aong with the algorithms when they
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were developed, it was not certain that such estimates could be relied upon for new groups of
drivers operating under similar conditions. Therefore, it was deemed necessary to apply
typical developed algorithms to a new data set for the purpose of obtaining a*“validated”
estimate of accuracy.

In this experiment, twelve driver-subjects drove the moving-base, computer-controlled
simulator at Virginia Tech while measures used in the previously derived algorithms were
gathered. Subjects were kept awake until approximately 12:15 A.M. when they were placed
in the simulator. They drove the simulator until about 3:00 A.M.

The conditions used in this experiment were similar but not identical to those of the
agorithm development (earlier) experiment. The reasons for using a slightly modified design
in the validation experiment were:

1. todetermine algorithm accuracy under similar, but not identical conditions, thereby

“simulating” the likely conditions of an application, and

2. tousethedatafor additional purposes, such as determining the effects of cruise

control on algorithm detection accuracy.

Typical previously-devel oped algorithms were selected and then tested for detection
accuracy on the measures. The accuracy analysis was divided into two major categories. The
first category was for agorithms based solely on driver-vehicle performance measures, and
the second was for algorithms including A/O task performance measures. The second
category contained half the data of thefirst category since subjects performed the A/O task
only in two of the four quartiles during the data collection run.

Theresults of the driver-vehicle performance category showed that on the average there
was no appreciable degradation in algorithm accuracy when the algorithms were applied to the
new data. Error classification matrices similarly showed no degradation. When thevar i ous
quartiles were compared, it was found that some minor variations in algorithm accuracy did

occur.
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Theresults of the A/O task performance category showed that there was areductionin

algorithm accuracy, as evidenced by R values, when the algorithms were applied to the new

data. On the average, R values were reduced from 0.81 to 0.61. Surprisingly, however,

classification matrices did not exhibit a corresponding reduction in accuracy. In other words,

the ability of the algorithms to classify correctly remained reasonably high.

Theresults of the validation study make it possible to draw severa important

conclusions about drowsy driver detection. They are as follows:

There was no degradation in detection accuracy for previously developed driver-
vehicle-performance agorithms when they were applied to new data.

+ Both R values and classification matrix accuracies maintained their values.

t The use of twelve representative subjects is therefore probably sufficient to
characterize algorithmsfor general use.

There was a degradation in R values for previously developed algorithms that
included A/O (secondary) task measures, when the a gorithms were applied to new
data. The drop in vaue averaged 0.2. However; classification matrices did not
exhibit a correspondingly large decrease in accuracy. Instead, their reduction in
accuracy was small.

t Thereductionin R vauesis probably aresult of using only four subjectsto
develop the agorithms, or possibly aresult of the limited number of bouts of
drowsinessin the new data.

t Rvauesfor validation results may underestimate the capabilities of algorithms
to classify correctly, when a small subject sampleis used to develop the
agorithms.

This experiment has shown that appreciable losses in accuracy do not occur when
appropriately-devel oped drowsy-driver detection algorithms are applied to similar
new data. Therefore, the algorithms retain their ability to detect drowsiness.

Any future algorithm devel opment work should be based on twelve or more
representative subjects, and both R values and classification matrices should be
evaluated.

Theresults of this experiment generally support the feasibility of drowsy-driver
detection.
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Chapter Six (Sixth Semi-Annua Research Period; Kim\Wreggit, and Wierwille, 1994)

This study employed the same set of data collected during the validation phase of the main
study. Asindicated previoudly, the validation study was planned in such away that additional
analyses could be conducted. Three additional issues were examined using this set of data, including:
1) an analysis of how forward-velacity measurexovaried with level of drowsiness, and whether or
not they could be used to improve algorithm detection accuracy, 2) an investigation of whether the
performance of a secondary-task had an alerting effect on drivers and, 3) determination of whether or
not cruise-control increased levels of driver drowsiness.

Use of Forward velocity-related measuresV e ocity-related measures were used from the

non-cruise control segments of each driver’ s data run. The results aforrel ations between these
measures and the five definitional measures of drowsiness gave an indication of the relationship
between longitudinal measures and drowsiness. Results suggest that the relationship between
velocity-related measures and drowsiness is moderately strong only when drivers are not stimulated
by a secondary task. In other words, under the dullest of driving conditions, there is a moderately
strong relationship. Otherwise, the relationship is weak.

To determine whether vel ocity-related measures contributed significantly to algorithm
detection accuracy, algorithms were developed both with and without vel ocity-related measures so
that direct comparisons could be made. Results showed that vel ocity-related measures contributed
only minimally. Similarly, error classification matrices showed only the slightest improvements when
velocity-related measures were included in the algorithms. It must thus be concluded that velocity-
related measures do not provide a substantial increase in drowsiness detection accuracy.

Effects of Cruise Control, Secondary Task, and Velocity-Related M easures on Driver

control. Results suggest that there is no strong alerting effect of the A/O task on level of drowsiness,

and similarly, there is no strong drowsiness inducing effect of cruise control usage
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on level of drowsiness. Although not conclusively demonstrated by the present experiment,
there are indications that the very dullest of conditions (no A/O task and cruise engaged)
caused increases in drowsiness level and decreases in lane-keeping performance. |f this
hypothesisis indeed correct, then stimulating the driver by any means should be helpful to a
degree in maintaining alertness.

Chapter Seven, Part One (Fairbanksand Wierwille, 1994)

This study focused on the effects of using higher-order (non-linear) agorithms on
drowsy-driver detection accuracy. Measures from the development phase (Wreggit, Kim, and
Wierwille, 1993) and validation phase (Wreggit, Kirn, and Wierwille, 1994) were squared or
multiplied with each other to obtain cross products. The second order terms, combined with
first order terms, were used to calculate predictive algorithms using data from the
devel opment phase. The devel oped algorithms were then applied to the validation data.

The results of this study suggest that the use of second-order terms in driver-
drowsiness-detection algorithms does not result in detection accuracy improvement. Although
not conclusively proven by the present study, the results do support the hypothesis that higher-
order algorithms produce more and larger outliers when applied to new data than do linear
agorithms. When outliers resulting from agorithm outputs (predictions) were limited to the
maximum and minimum values of the observed scores (in other words, the outliers were
“clipped” from the data and set to avalue equa to the largest and smallest observed data) the
R valuesincreased on average from 0.612 to 0.800.

Chapter Seven: Part Two (Wreggit and Wierwille, 1994a)

Various A/O task agorithms were developed and validated in previous phases of this
study (Wreggit, Kim, and Wierwille, 1993 and Wreggit, Kim, and Wierwille, 1994). It was
found that the R valuesin the validation phase (using new A/O data) were significantly lower
than the R values obtained in the development phase (using original A/O data). When the
results of the Fairbanks and Wierwille (1994) study became available, it was felt that the

significant decrease in R va ues from the devel opment phase (using A/O data) to the
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validation phase (using A/O data) in the main study could have been due to the effects of
prediction outliers.

The purpose of this follow-up study was to examine the possibility of potential
improvement in multiple-R values by limiting the output (prediction) values obtained from
previously developed and validated A/O task agorithms. The algorithm output values were
limited to the minimum and maximum values of the corresponding observed data. Thus, no
outliers were present when the subsequent correlation analyseswererun. A comparison of R
‘values obtained from analyses of original data (main study: development phase), new data
(mainstudy: validation phase), and “clipped” datawere examined.

The outliers present in the prediction data were very limited in number and in
magnitude. It was concluded from the results of this study that the significant decreasein A/O
task algorithm R values in the validation phase was not a result of outliers. Instead, it is most
likely that the use of only four subjectsin A/O task agorithm development limited the
prediction capabilities somewhat.

Chapter Seven: Part Three (Wreggit and Wierwille, 1994b)

In developing and validating algorithms for drowsiness detection, drivers were
purposely subjected to partial sleep deprivation and driving in the early morning hours. False
alarm rates obtained would thus reflect those corresponding to such drivers, and not drivers
who arefully aert. Therefore an additional analysis was performed to assess the aert-driver
fase-alarmrate. To accomplish thistask, data from the algorithm devel opment phase were
screened for segmentsin which driverswere fully alert (that is, alert based on the definitional
measures). These segments were extracted and then new R values and classification matrices
were computed (for the extracted data). The results showed large decreasesin R values and
large improvementsin classification accuracy.

It was concluded that if driversarefully alert, 1) R values will not accurately reflect
the detection capability of agiven agorithm, and 2) there will be substantially fewer false

alarmsthan earlier classification matrices would indicate.
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Chapter Eight

This chapter includes a summary of findings and recommendations for future
research. The reader isreferred directly to this chapter for a summary.
Appendix A

This appendix contains regression summaries and classification matrices for selected
agorithms. The coeffkients (B-values) in the regression summaries pecify the weighting

that should be used when algorithms are employed in an application.
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Chapter One
Literature Review
(This chapter is based on materia drawn from the First Semiannual Research
Report, dated April 10, 1992 and referred to as Wierwille Wreggit, and
Mitchell, 1992. The materia presented here has been updated based on recent

findingsin the literature)



INTRODUCTION

This chapter contains 1) a brief review of motor vehicle accident data bases for
characteristics of drowsy driver accident scenarios and 2) areview of the drowsiness related
literature.

The purpose of examining accident data bases was to provide information about
scenarios most likely to lead to drowsiness-related accidents. The purpose of reviewing a
wide variety of literature pertaining to past driver-drowsiness and general-drowsiness
research was to determine 1) which operationally-obtainable measures are believed to covary
with the level of drowsiness and 2) how drowsiness level should be operationally defined.
These information gathering tasks were directed at developing the best experimental plan for

drowsiness detection a gorithm development.



ACCIDENT SCENARIOS

One of the leading causes of single- and multiple-car accidentsis driver impairment
due to drowsiness (Office of Crash Avoidance Research, 1991). Unfortunately, drowsiness
while driving may be perceived as less of a problem than it actually is because of the difficulty
of attributing drowsiness as a cause of an accident. However, as more research is being
conducted concerning drowsy drivers, it is becoming indisputable that a major problem does
exist. Also, there may be many more incidentsin which theinitial cause of theloss of control
of avehicleisdrowsiness yet isreported to be caused by something other than drowsiness.

A study conducted in 1973 at Duke University by Tilley, Erwin, and Gianmrco
provides evidence that drowsiness while driving is an all too common occurrence. In this
study two experimenters, stationed in the Durham, North Carolina Department of Motor
Vehicles, administered questionnaires pertaining to driving habits and behaviorsto 1500
individuals who were successful in renewing their driver’ slicense. Of those 1500 people,
64% responded that they had, at one time or another, become drowsy while driving. Also,
over 7% responded that they had gone to sleep for short periods while driving. Of those who
answered that they had had trouble with drowsiness while driving, 3 1.2% responded that they
had become drowsy before they were aware of their condition. Of those who did experience
drowsiness while driving, approximately 10% reported that they had been in one or more
accidents due to drowsiness or falling asleep at the wheel. Another 10% responded that they
had been in anear accident due to drowsiness.

A survey completed in 1980 by the Kanagawa Prefectural Police, based on
questionnaires collected near the Tokyo-Nagoya Expressway, shows that approximately 75%
of the drivers admitted to being sleepy while driving (Seko, 1984). Unfortunately, Seko does
not give an indication in his article concerning the extent of the drowsiness experienced by the
polled drivers. Seko also citesasurvey of the causes of accidents on the Tokyo-Nagoya
Expressway since 1969. He found that most of the rear-end collisions at night were
attributable to drowsiness. A survey cited by Seko (1984) which was carried out by the



Shizuoko Prefectural Police statesthat in 1973 nine percent of all traffic accidents were
caused by drowsiness and 45% of all deaths were due to drowsiness. Planque, Chaput, Petit,
Tarriere, and Chabanon (1991) report that fatigue is the cause of 26% of the fatal accidents
occurring on the highways in France.

A recent NHTSA Research Note (Knipling and Wang, 1994) summarized available
national statistics for the years 1989-93 based on General Estimates System (GES) data
representative of all crashes and Fatal Accident Reporting System (FARS) statistics on fatal

crashes. A summary of their findings is as follows:

« There were an average of 56,000 police-reported crashesin which driver drowsiness/fatigue
was cited (0.9 percent of all crashes).

. An annual average of 1,542 fatalities were associated with these crashes (3.6 percent of all
fatalities).

. These crashes resulted in an estimated 40,000 non-fatal injuries (all non-fatal severity
levels).

« Dueto underreporting, al of the above statistics are regarded as conservative.

Statistics on crash characteristics of “drowsiness-cited” cases indicated the following:

« Drowsy driver crashes peak in the early am. hours with a second smaller peak in the
afternoon. Fifty five (55) percent occurred between midnight and 7:59am, and another 18
percent occurred between 1:00 and 4:59am.

« Most occurred in non-urban areas, generally on roadways with 55-65 mph speed limits.

« Eighty (80) percent were single-vehicle crashes or collisions- with parked vehicles. An
additional 6.6 percent were subject vehicle-striking rear-end crashes.

« In 76 percent of crashesthe driver was the only occupant of the subject vehicle.
. Fifteen (15) percent of drowsiness/fatigue, crashes also involve acohal.

. Involvement is strongly related to both driver sex and driver age. For the 1989-93 period,
76 percent of subject drivers were male, and 59 percent were under the age of 30.

« In addition to young male drivers, commercial (i.e. long-haul truck) drivers are at risk,
primarily due to their high mileage exposure.



REVIEW OF THE DROWSINESSLITERATURE

This section examines previous studies that have focused on physiological measures,
driver-performance measures, and behavioral measures. The overall purpose of this section
isto present those operational indicators or drowsiness which have shown promisein
detecting driver drowsiness and are either currently obtainable or may soon be obtainable on-
the-road. Thisinformation will be used to formulate a set of measures which should be
incorporated into the simulator testing and the development of the detection algorithms.

Many measures have been examined as predictors of driver impairment and can be
divided into two basic categories. objective measures and subjective measures. In general,
objective measures have demonstrated greater promise as predictors of driver impairment
than subjective measures (Dingus, Hardee, and Wierwille, 1985). A subclassification exists
within this objective measure category and is comprised of physiological measures and
performance measures. In large part, performance measures have shown potential both in
terms of driver impairment prediction, aswell as practicality for on-the-road implementation
(Dingus et al., 1985). Conversely, physiological measures typically cannot be obtained on-
the-road in amanner that isfeasible but are of interest since they can be predictive in nature
concerning the onset of drowsiness.

A study conducted in 1984 by Skipper, Wierwille, and Hardee found results that
indicated that it was possible to detect the onset of driver drowsiness by observing drivers
reactions to steering wheel torque and front wheel disturbances produced by the automobile
simulator. However, while subjects were involved in anormal driving scenario the
experimenters found that it was also possible to predict the onset of drowsiness. Several
variables were examined, but eyelid closure was the most consequential.

Dingus, Hardee, and Wierwille (1985) performed a study that examined the effects of
drowsiness on driver performance. Dingus, et a. employed both sleep deprived subjects and
acontrol group consisting of the same subjects in a rested condition. The sleep-deprived

runs took place from 2:00 am. to 3:30 am. The initial analyses of the collected data were



correlation analyses between the eyelid closure measures and lane position measures. The
lane position measures were indicators of driver impairment while the eyelid closure
measures were indicators of drowsiness. Eyelid closure was recommended by Erwin (1976)
sinceit has been found that eyelid closure is avery stable physiological indicator of
drowsiness. It wasfound that arelatively high correlation between eyelid and lane position
measures was present, as seen in Table 1.

Dinguset a. (1985) ran a second set of correlation analyses between the indicators of
driver impairment, which included eyelid closure and lane position measures, and other
dependent measures. Dingus et al. state that any measure that demonstrated reasonably
consistent correlations across the impairment indicators of approximately 0.25 or greater was
considered promising. The potentially reliable impairment detectors based on correlation
analyses run by Dinguset al. concerning drowsiness can be seen in Table 2. Table 3 shows
drowsiness impairment indicators and associated classification matrix for six-minute interval
data from the Dingus et a. study. The six-minute interval data were found to provide dlightly
better discrimination of drowsiness-induced impairment.

It was found through stepwise discriminant analyses that YAWMEAN, YAWVAR,
STEXEED, SEATMOV, and LANDEV SQ contained significant independent detection
information. By employing eyelid closure as a definition of drowsiness it was possible for
Dinguset al. to create several models of driver impairment based upon driving performance.
This was an important development since the performance measures could be unobtrusively
implemented using an in-car drowsiness detection system. Performance measures will be
discussed in more detail in the Driving Performance Measures section of this chapter.

In the study conducted by Dingus, Hardee, and Wierwille (1985), EY EMEAS seems
to be affected by degree of seep deprivation as well as time on task. However, when
compared to EYEMEAS data found in the Hardee, Dingus, and Wierwille (1985) study it
becomes apparent that time on task may be as important as the degree of sleep deprivation.



Table 1. Eye Measure vs. Lane Measure Correlations. (From Dingus, Hardee and

Wierwille, 1985)

EYEMEAN EYEMEAS PERCLOS
LANEX A7 4 .62
LANEDEVV 50 55 .60
LANEDEVSQ 55 59 .60
LANEDEV4 36 40 40

. EYEMEAN: Mean eyelid closure (zero = wide open)
« EYEMEAS. Themean-square percentage of theeyelid closuresignal.
PERCLOS:.  Proportion of timethat the eyes are 80% to 100% closed.
LANEX: Count of the number of samples taken while the simulated vehicle was
out of the lane.
« LANEDEVV: Lane position variance.
« LANEDEVSQ: Weighted lane deviation. Heavier weighting away from the center of the
lane by a squared function.
« LANEDEV4: Heavily weighted lane deviation. Heavier weighting away from the

center of the lane by a fourth power function,




Table 2.  Impairment Detectors Based on Correlation Analysis (From Dingus, Hardee and

Wierwille, 1985)
YAW-VAR
STEXEED
STVELVAR
LGREV
SEATMOV
HRTRTM
HRTRTV
« YAWVAR:  Yaw deviation variance.
. STEXEED: Count of steering velocity occurrences over 150 degrees per second.
. STVELVAR: Steering velocity variance.
. LGREV: The number of timesthe steering wheel position increment exceeds 5
degrees (after steering wheel velocity passed through zero).
. SEATMOQOV: Seat movement counter.
. HRTRTM: Heart rate mean.
. HRTRTV: Heart rate variance.



Table3: Drowsiness Impairment discriminant Analysis. Six-Minute Interval Data -- Best

Results (From Dingus, Hardee and Wierwille, 1985)

Predicted
Impaired Not Impaired
Impaired 20 8 28
(28.57%)
Actua
4
Not Impaired (2.63%) 148 152
24 156 180
Model Variables: APER = 6.7%

YAWVAR 1692
SEATMQOV 6218
LANDEVSQ  .4152
YAWMEAN 2460
STEXEED -.0292



In Figure 2 a comparison of the EY EMEAS data from both studies with starting times
aligned is presented.
Stages of Seep

To understand the terminology concerning drowsiness and sleep a discussion of the
stages of wakefulnesswill be presented. An understanding of the various stages of deepis
important when carrying out studies that examine the physiology, psychology, or behavior of
sleep deprived subjects. It should be noted however, that while driving an automobile, a
person will most likely be at one of two stages of wakefulness -- either stage W or stage 1
seep. Below is a summary explanation of the various stages of deep. The descriptions of

the stagesis taken, in part, from Carskadon (1980).

o Stage W deep. Stage W does not actually describe a sleep state but rather a state of
wakefulness. This stage is usually accompanied by arelatively high tonic EMG.

Rapid eye movements and eye blinks are present in this stage.

. Stage 1 deep. Thisisthe stage that intervenes between wakefulness and other sleep
stages. In most subjects, the duration of stage 1 sleep usually is not longer than
several minutes. Stage 1 sleep may occur after large movements of the body which
are caused by the relaxation of the muscles in the body of a person. entering this stage
of wakefulness. Stage 1 deep following wakefulness is often accompanied by slow
eye movements. Each slow eye movement may be several seconds in duration.

Rapid eye movements are absent at this stage. Tonic EMG levels are commonly

below EMG signals of individuals in arelaxed but wakeful state.

Stage 2 deep. No eye movements are usually seen in stage 2 sleep. Stage 2 sleep can
last as long as one hour and become interspersed with periods of REM dleep.
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Dingus, Hardee, and Wierwille (1985)

2AM 2:30 3:.00 3:30 AM

4200 10200 12000

Hardee, Dingus, and Wierwille (1985)

Midni g_;ht 12:30 1:00 1:30 2:00 2:30AM
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Stage 3deep. Stage 3 deep is atransitional stage between stage 2 and stage 4 Seep
early in the night. Sometimes stage 3 sleep will not be followed by stage 4 if it occurs
in the NREM portion of the sleep cycle.

Stage 4 deep.  Stage 4 sleep usually occurs during the first third of the night. This

stageis characterized by a predominance of high amplitude slow brain waves.

REM dleep. This stage usually occurs within the firgt 200 minutes after sleep onset.
REM dleep is characterized by low voltage, mixed frequency EEG, bursts of rapid eye
movement (REM) and low amplitude EMG.

Promising Physiological M Found in the Li

The purpose of this section isto discuss measures that may lead to a more refined,
operational definition of drowsiness and the onset of stage 1 sleep or drowsiness. A review
of the sleep and drowsiness literature has been conducted and the most likely measures to be
successfully employed in the refinement of the operational definition of drowsiness, that may
eventualy aid in the detection of the onset of drowsinessin various applications, are

discussed below.

1

Eyelid closure. Eyelid closure has been found to be avery reliable predictor of the
onset of sleep (Erwin, 1976) and degraded task performance (Dingus, Hardee, and Wierwille,
1985; Hardee, Dingus, and Wierwille. 1985; Skipper, Wierwille, and Hardee, 1984). Erwin
examined various measures to determine whether they were predictive of sleep onset,
including plethysmography, respiration rate, electroencephalography (EEG), skin electrical
characteristics, electromyography (EMG), heart rate variability, and eyeiid closure. It was
found that eyelid closure was the most reliable predictor of the onset of sleep among the
dependent measures examined. Eyelid closure is indicative of sleep onset and undoubtedly

the cause of poor performance in visual tasks, especially tracking tasks such as driving. It
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seems quite obviousthat if adriver’seyelids are closed, the ability to operate a vehicle would
be greatly hampered.

Skipper, Wierwille, and Hardee (1984) examined the ability of sleep deprived drivers
to perform a one and one half hour driving task. Various disturbances were purposely input
into the steering system of the driving simulator to mimic on-the-road conditions. It was
found that performance measures such as lane deviation, yaw deviation, and steering velocity
were highly correlated with eyelid closures.

The apparatus used to capture eyelid closures in the Dingus et al, Hardee et d., and
Skipper et a. studies was alow-light level camera. A linear potentiometer was used by an
experimenter to track the eyelid movement of the subjects manually.

Eye movement. There are two general reasons that one may desire to record eye
movements during sleep or before sleep. First, a principal sign of REM dleep is the phasic
burst of rapid eye movements. Second, the onset of sleep in most subjectsis heralded by or
accompanied by slow, rolling eye movements (Carskadon, 1980).

Slow, rolling eye movements may accompany the onset of sleep or are precursors of
sleep onset. This phenomenon also occurs with the transition to stage 1 sleep during the
night. The characteristics of human eye movements change greatly with alertness level.

Slow eye movements (SEMs) prove to be one of the most characteristic signs of the phase of
transition between wakefulness and sleep (Planque, Chaput, Petit, and Tarriere, 1991).
Dement (1975) states that the SEM event isacrucial occurrence in the sleep onset process.

Slow, lateral eye movements are quite different than eye movementstypically seenin
aperson who isfully awake. A completely awake individual can be observed as having
quick eye movements. As subjects become drowsy their eyes move in a pendular motion
from left to right (Hiroshige, and Niyata, 1990) and the number of quick, voluntary
movements of the eyes begins to lessen. Endo, Inomata, and Sugiyama (1978) found that
attentiveness begins to disappear in conjunction with drowsiness due to the lessened number

of lateral voluntary eye movements that would normally be used in adriving situation to
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check the rear view mirrors, side windows, etc. In other words, as alertness decreases,
attentiveness also decreases. Numerous SEMs are detected during stage 1 sleep, but they also
appear during the long period separating waking from sleep (Hiroshige, and Niyata, 1990).
Torsvall and Akerstedt (1988) noted that the proportion of SEMs increased sharply with the
advent of drowsiness on train drivers making long trips. Convergence of the eyesisalso
possible when a person becomes drowsy.

Electrooculography (EOG) involves the measuring of eye movements via electrodes
in contact with the skin surrounding the eyes. The process of measuring eye movements with
EOG is quite simple due to the electrical nature of the human body. Inthe eyeball, thereisa
small electropotential difference from the front to the back. The front (cornea) of the eyeis
positive with respect to the back (retina) of the eye.

Before a certain point in a person’s awake but drowsy state, SEMs do not exist.
However, after a particular moment in the onset of sleep, slow, rolling, lateral, ocular
movements create sinusoidal activity in the EOG (Dement, 1975). On the EOG signd, the
SEMs are translated by slow deflections lasting more than a second. It is likely that
amplitudes of at least 100 microvolts will be seen (Torsvall and Akerstedt, 1988). The EOG
waves that are normally observed are moderate in amplitude initially, but increase with the
degree of drowsiness (Santamaria and Chiappa, 1987).

Planque et al. (1991) found that after several minutes of driving only blinking and
glances at simulator instrumentation were recorded. Approximately 30 minutes into the
study deterioration of deliberate eye movement was seen. Planque et d. state that by
analyzing the EOG, it is possible to follow clearly the deterioration of alertness.

Muscle activity. Sleep onset may be accompanied by the reduction of muscle

activity, or muscle tonicity, especidly in the facial muscles. However, Erwin (1976) states
that measures of muscle activity offer essentially no predictive information pertaining to
sleep onset and that significant sleep can occur for severa minutes prior to any significant

change in muscle tone. Unfortunately, it is not clear as to which muscle groups he examined.
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A study conducted by Y abuta, lizuka, Yanagishima, Kataoka, and Seno (1985)
demonstratesthat facial expression iseffected by drowsiness. Yabutaet a. state that special
attention was focused on subjects’ facial expression, among other physiological measures,
because facial expression is known to vary according to the alertness level of the subject.
Observing the muscle activity which causes the changesin facia expression with drowsiness
is one method of quantifying this measure.

Electromyography (EMG) is acommon method used for recording muscle activity.
Often times, EMGs are used to evaluate various sleep and muscle disorders. EMG measures
of facial muscles may be an efficient method of quantifying facial expression, or more
specifically, facial muscle tone.

Hauri (1982) demonstrates that EMG recorded on the chin steadily, though not
dramatically, decrease as a person nears stage 1 sleep. Even when a subject istotally relaxed,
small muscle potentials will be seen (Carskadon, 1980). Thisis due to the fact that every
muscle is composed of many contractile fibersthat are innervated by nerves. When amuscle
fiber is activated through nerve innervation, achange in the electrical potentia isseen. When
the muscle is relaxed, fewer nerves discharge, thus a smaller EMG potential is recorded.

Brain wave activity, Sleep produces distinctive alterations in the amplitude and
frequency of the signals from the brain. Erwin (1976) states that thereis no reliable
alteration in background brain activity prior to eyelid closure. Upon eyelid closure Erwin
found that a very rapid shift in brain wave patterns takes place. This shift isidentifiable as
stage 1 sleep. However, Planque et al. (1991) states that sharp changes in the frequency
content of brain wave activity are observed during the crossing from alertness to a stage of
hypoal ertness. then to drowsiness, and finally to sleep. A slowdown of the cerebral activity,
in genera, an increase in the percentage of alphawaves and, in turn, adecrease in the
percentage of betawaves, is observed at the same time that a decline in performance is seen.
Seko (1984) reportsthat alphawaves appear during decreased alertness such as

absentmindedness or “cloudy consciousness.” Seko cites the work of Kuroki, Kitakawa, and
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Oe (1974) wherein a pha waves were hardly detected at the beginning of a driving session but
as the driving session continued and the level of driver/subject alertness decreased, high-
amplitude al pha waves occurred frequently. Planque et al. (199 1) suggest that analysis of the
beta, alpha, and theta frequencies are the most appropriate for examining/detecting the onset
of sleep.

Planque et d. state that automatic processing of the EEG signal has proved very
difficult to implement. Presently, various phases of sleep (stage 1, stage 2, REM, etc.) are
identifiable via automated methods, however an examination of drowsiness and sleep onset is
distinguished by much less distinctive physiologica events. Therefore, Planque et a. suggest
the manual method for analysis of EEG as well as EOG which was discussed previously.

Skin potential level, The SPL measures the potentia difference between the
outermost layer of skin (stratum corneum) and the layer immediately below it (stratum
lucidurn). In a study by Erwin, Hartwell, Volow, and Alberti (1976) it was found that a
correlation exists between changesin skin potential level (SPL) and stages of arousal. Inall
cases, EEG-defined-sleep occurred only after a shift in skin potential level (Erwinet a.,
1976). It was also found that significant shiftsin skin potential level preceded not only stage
1sleep but also the transition that occurs prior to stage 1 sleep. In the several minutes
following the SPL shift, subjects oftentimes became drowsy as evidenced by decreased
performance, frequent eyelid closures of more than one second, and occasionally, EEG
manifestations of sleep (Erwin, 1976). Although decreased skin potential negativity was
shown to be a prerequisite of sleep onset, decreased potential values preceding sleep onset
varied in lengths of time. This fact may indicate that SPL is by no means the only
deterministic factor of arousal level (Erwin et a., 1976).

Erwin et a. (1976) discounted the hypothesis that electrodermal shiftsare simply a
function of time from initial arousal. This was done by observing that spontaneous and

evoked EEG arousal was accompanied by areturn to waking skin potential levels.
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Some obstacles do exist, however, when it comes to applying SPL as a measure of
drowsiness. First, recordings of some subjects may give indications of shift changesin SPL
without showing drowsy behavior or slegp onset and with no performance decrements seen.
As stated earlier, in all cases, EEG-defined sleep occurred only after a shift in skin potential
level. From this, it can be hypothesized that SPL shifts must occur for a person to drift into
sleep athough a shift in SPL is not always followed by sleep onset. Second, thereisa
considerable variation in baseline values of SPL. This variation can be seen between and
within subjects. SPL is susceptible to alterations in subjects mood, activity level, and
temperature.

Heart rate variability. Heart beat interval variability has been found to correlate with
drivers fatigue level (Wierwille and Muto, 1981). As cited in the literature by Wierwille et
al., (198 1) Sugarman and Cozad (1972) and Riemersma, Sanders, Widervanck, and Gaillard
(1977) found, even greater amounts of variability in heart rate with fatigue. On the other
hand, Volow and Erwin (1973) found no correlation between heart rate variability and sleep
onset. However, Volow states that in real (or simulated) driving situations there may be
sufficient motoric demands on the driver such that the interaction of driving activity may
produce significant variations.

Pupil aperture size variability. The pupil serves asawindow into central nervous
system activity. Spontaneous pupillary movement in darkness in the normal awake
individua has been described asreflecting “tiredness,” “fatigue,” and “slegpiness’
(Lowenstein and Loewenfeld, 1963; Lowenstein and Loewenfeld, 1964). The state of the
autonomic nervous system has been thought to reflect fatigue and wakefulness for quite
some time. For instance, over 200 years ago, pupillary constriction was believed to be
associated with sleep (Fontana, 1765). Marked changes in pupillary stability and extent of
oscillations have been consistently shown to occur in normal “tired” subjects (Lowenstein
and Loewenfeld, 1951; Lowenstein and Loewenfeld, 1963; Lowenstein and Loewenfeld,

1964). Pupillary behavior in individuals suggests that the actions of the pupil do reflect
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autonomic events and that it is consequently an indirect but accurate indicator of deepiness or arousal
level.

Secondary Task Measures

A study was conducted by Hardee, Dingus, and Wierwille (1985) which employed secondary
tasks in asimulator study using sleep deprived subjects. This experiment was run starting at 12:00 a.m.
instead of 2:00 am. asin the Dingus, Hardee, and Wierwille (1985) study. Hardee et al. found that
auditory or visual secondary tasks, along with heart rate variability, predicted quite well whether a
subject was impaired or unimpaired due to drowsiness. However, it was found that secondary tasks did
not keep the subjects from becoming drowsy.

Subjective Ratings

Observer ratings. Most of the studies that have been carried out rely on the subjective
evaluation of drowsiness by the subjects themselves. One study that does, investigate observer rating of
drowsiness was carried out by Carroll, Blisewise, and Dement (1989). The results of this study show a
high interrater reliability for observations of the degp-wake cycle of 39 nursing home residents.

Driving Performance Measures as Indicators of Driver Drows ness

Driving performance measures that can be used to predict the onset of drowsiness are
important since it has been shown that sleep loss produces decrements in driving skills (Hulbert, 1972).
Driving performance measures include lane-related measures, steering-related measures, and heading-
and lateral acceleration-related measures. These measures are obvioudly important since drivers must
maintain proper lane position to avoid vehicles in nearby lanes and objects located on the side of the
roadway. The purpose of this section is to discuss various measures used in the past to evaluate driver
drowsiness while a subject is actually behind the wheel of an automobile (either smulated or on the
road). Measures of performance have potential for driver impairment prediction and are, in some cases,

relatively easy to ingtall in an on-the-road vehicle. An overview of performance measures as
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indicators of driver drowsiness has been addressed by Wierwille, Wreggit, and Mitchell

(1992) and will be presented, in summary, below.

Lane-related measures. Severa studies have found lateral control measures to be

closely related to prolonged driving. Dureman and Boden (1972) found that lane tracking

ability degrades as time on task increases over afour-hour period. Several other researchers

(Mast, Jones, and Heimstra, 1966; Sussman, Sugarman, and Knight, 197 1) found similar

resultsin that lane position errorsincreased over afour-hour period. Several lane-related

measures have been found to be accurate and reliable measures for the detection of

drowsiness, al of which are feasible for on-the-road use. The names of the measures

described below are simply the variable names used in previous studies.

. LANEDEVM:

. LANESTD:

. LANEDEV:

. LANEDEVSQ:

L ane deviations which were heavily weighted for |ane exceedences were
found to be highly correlated with eye closure and were influenced by
sleep deprivation and time on task (Skipper, Wierwille, and Hardee, 1984).

The standard deviation of the lane’ position was found to be highly
correlated with eye closure and was influenced by sleep deprivation and
time on task (Skipper, Wierwille, and Hardee, 1984).

the global maximum lane deviation was found to be highly correlated with
eye closure and was influenced by sleep deprivation and time on task
(Skipper, Wierwille, and Hardee, 1984).

The mean square of the lane deviation has been found to contain a
significant amount of independent information. The measureis
considered to be an accurate and reliable measure for the detection of

drowsiness (Dingus, Hardee, and Wierwille, 1985).
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. LATPOSM:  The mean square of the high passlatera position (heavily weighted for
rapid changesin lateral position) shows potential as a drowsiness indicator

(Dingus, Hardee, and Wierwille, 1985).

Steering-related measures. The frequency and type of steering reversal isrelated to
lane tracking. Thisrelation is seen since drivers who are impaired due to drowsiness are
typically inattentive to the driving task. Asaresult, the number of “ micro-wheel
adjustments’ may decrease. Ryder, Madlin, and Kinsley (198 1) found that steering reversals
decreased in frequency with time on task and Hulbert (1963), cited in Dingus, Hardee, and
Wierwille (1985) found that sleep deprived drivers have alower frequency of steering
reversals than rested drivers. Sugarmanand Cozad (1972) found that steering magnitude
increased with time. Other researchers such as Dureman and Boden (1972), cited in
Haworth, Vulcan, Triggs, and Fildes (1989) and Mast, Jones, and Heimstra (1966), cited in
Haworth et al. (1989) have found that there is a deterioration of steering performance with
drowsiness. Erwin (1976) has a so found a reduction of “ micro-wheel adjustments’ during
drowsiness. However, Erwin states that the wheel adjustment measure may not be predictive
since EEG signalsthat indicate the onset of drowsiness precede the change in steering wheel
adjustment behavior. Severa steering-related measures have been found to be accurate and
reliable measures for the detection of drowsiness, all of which are feasible for on-the-road
use. The names of the measures described below are ssimply the variable names used in
previous studies.

. STVELM: The steering velocity weighted heavily for fast maneuvers has been found
to be highly correlated with eye closure and was influenced by sleep
deprivation and time on task (Skipper, Wierwille, and Hardee, 1984).

« STEXEED:  Thenumber of times steering velocity exceeded a criterion (150

degrees/second over athree minute interval) was found to contain a
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significant amount of independent information. This measureis
considered to show some potential as a drowsiness indicator (Dingus,

Hardee, and Wierwille, 1985).

o STVELV: Steering velocity variance (cal culated over athree-minute interval) was
found to show potential as a drowsiness indicator (Dingus, Hardee, and

Wierwille, 1985).

. LGREV: The number of times the steering wheel position increment exceeded 5
degrees (after steering wheel velocity passed through zero) was found to

show potential as a drowsiness indicator (Dingus, Hardee, and Wierwille,

1985).

ited measures. Heading errors can quickly
become amajor problem when driving at high speeds. For example, if heading changes by 1
degree from straight ahead at 60 miles per hour, the lateral velocity will be approximately 1.5
feet per second. It is easy to see that heading is closely related to lane maintenance and
steering-related measures. It is no surprise then that changesin heading and heading rate
may also be possible measures that could be employed to detect drowsiness. Several
heading- and heading rate-related measures have been found to be accurate and reliable
measures for the detection of drowsiness, all of which are feasible for one-the-road use. The
names of the measures described below are simply the variable names used in previous
studies.
« YAWDEV:  Thegloba maximum yaw deviation was found to be highly correlated
with eye closure and was influenced by sleep deprivation and time on task

(Skipper, Wierwille, and Hardee, 1984).
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« YAWVAR:  Theyaw deviation variance (calculated over athree-minute period) was
found to contain a significant amount of independent information. This
measure is considered to be an accurate and reliable measure for the

detection of drowsiness (Dingus, Hardee, and Wierwille, 1985).

e YAWMEAN The mean yaw deviation (calculated over athree-minute period) was
found to contain a significant amount of independent information. This
measure is considered to be an accurate and reliable measure for the
detection of drowsiness (Dingus, Hardee, and Wierwille, 1985).

Braking and acceleration meaaures. The ability of adriver to apply brakes and
accelerator adeguately so as to maintain consistent driving speed is of obvious importance.
Erratic driving or slowed braking responses may be a factor that could contribute to an
accident.

Hulbert (1963) found that sleep deprivation contributes to the slowing of accelerator
behavior. Safford and Rockwell (1967) found that accelerator pedal reversals were highly
correlated with time during a twenty-four hour driving study. However, a literature review
conducted by Hardee, Dingus, and Wierwille (1985) reported little evidence that accelerator
behavior was related to time on task or drowsiness. Several other studies confirm the
findings by Hardee et a (Brown, 1965; Brown, 1966; Brown, Simmonds, and Tickner, 1967;
Huntley and Centybear, 1974). It was also found by Huntley and Centybear that brake usage
did not significantly change with sleep deprivation. Severa other studies also confirm these
findings (Brown, 1965; Brown, 1966: Brown, et al., 1967).

Related to braking and acceleration behavior is speed-related behavior. Speed
variability, including longitudina acculturation and velocity maintenance, have not shown
consistent results with regard to performance degradation in sleep deprived subjects. Mast,
Jones, and Heimstra (1966) found significant differences between subjects’ abilitiesto

maintain constant velocity during the first and last hours of both four- and six-hour simulated
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driving sessions. Riemersma, Sanders, Wildervanck, and Gaillard (1977) found that speed
variability significantly increased during night driving. However, three studies (Brown,
1965; Brown, 1966; Brown, et d., 1967) did not find asignificant change in velocity
maintenance ability in both eight- and twelve-hour driving tasks. Safford and Rockwell
(1967) found no increasesin speed variability during a 24 hour driving test.

The ability to follow alead car at aconsistent and safe distance is quite important
while driving at high rates of speed. It was found by Muto and Wierwille (1982) that
subjects’ reaction times to an emergency situation involving the sudden deceleration of alead
car in asimulated car-following task were significantly greater after driving for 30, 60, and
150 minutes when compared to baseline runs. Muto and Wierwille state, however, that
repeated response trials may not provide valid indications of fatigue-induced decrementsin

performance.
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Chapter Two
Evaluation of Driver Drowsiness by Trained Raters.
Development of AVEOBS Operational Definition of Drowsiness
(This chapter represents an extended summary of work reported in the Second
Semiannua Research Report, dated October 15, 1992, and referred to as
Wierwille and Ellsworth, 1992)
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INTRODUCTION

One of the findings of the literature review was that insufficient information existed
on defining the level of drowsiness of driversin apractical way. Specifically, the human
factors research literature contains very few reports of studies which have used observersto
rate the level of drowsiness exhibited by anindividual. Most of the existing literature
addresses studies that employed subjects to perform subjective self ratings. However, a study
carried out by Carroll, Blisewise, and Dement (1989) in several nursing homes investigated
the ability of observersto rate levels of drowsiness. The results of the study suggested that
the use of observer ratingsisavalid approach to studying drowsiness.

Therefore, efforts were directed toward the devel opment of operational definitions of
drowsiness based on observer rating. The primary objective of this study was to determine if
an accurate operational definition of drowsiness could be developed by rating video taped
segments of drivers at various levels of aertness. This study employed trained raters
(subjects of the study in this case) who were familiar with the behavior of drowsy
individuals. The raters were trained to look for behaviors oftentimes exhibited by drowsy
individuals. Specifically, as an individual becomes drowsy, behaviors such as rubbing of the
face or eyes, scratching, facial contortions, and moving restlessly in the seat may be
exhibited. These actions are thought of as countermeasures to drowsiness. They occur
during the intermediate stages of drowsiness. As an individual becomes very drowsy eyelid
closures may exceed two or three seconds. These slow eyelid closures may be accompanied
by aupwards or sideways rolling movement of the eyesthemselves. A drowsy individual
may also appear not to be focusing the eyes properly, or may exhibit a cross-eyed (lack of
proper vergence) look. Facia tone will probably have decreased. Very drowsy drivers may
also exhibit alack of apparent activity and there may be largeisolated (or punctuating)
movements, such as providing alarge correction to steering or reorienting the head from a

leaning or tilting position.
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A determination was made as to whether trained raters were able to consistently and
accurately rate levels of drowsiness through the observation of the video taped faces of
drowsy drivers. Consistency within raters and consistency between raters were evaluated.
The specific objectives of this study were as follows:

Objective 1. Evaluate intrarrater reliability. (To determine if arater assigns scores
consistently.)

Objective2: Evauate test-retest reliability. (To determine whether arater will score
similarly on the same measure at two different pointsin time.)

Objective 3: Evauate inter-rater reliability. (To determineif different raters assign

similar scores using the same instrument under the same conditions.)

Objective4: Create anew operational measure of drowsiness based on observer rating

of drowsy driversfor later use in the development of drowsiness-

detection algorithms.

If an observer rating method could be devised thatcould predict performance under a

variety of apparent drowsiness levels, then it could serve as an alternative operational

definition of drowsinessin the algorithm development study.
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METHOD
Raters
Six individuals (three males and three females) volunteered to participate in this study.
All participants were graduate students in the Human Factors Engineering program at
Virginia Polytechnic Institute and State University. Human Factors students were chosen
because of their familiarity with subjective rating procedures and human factors methodol ogy
(It was assumed that persons performing drowsiness evaluations in research or in applications
would have received behavioral training). Each individua participated in two sessions, each
lasting approximately two hours.
Apparatus
Previous experiments involving drowsy drivers had been performed in the Vehicle
Analysisand Simulation Laboratory, in which low-light level video recordings of the drivers
faces had been made. The videotapes were retained for archival purposes and were available
for usein the present study. The tapes showed drivers driving a computer controlled,
moving-base driving simulator, and contained episodes of avariety of levels of apparent
drowsiness. Thus, segments of the tapes could be transferred to new master tapesfor usein
the present experiment.
The subjective ratings of the video segments were performed in the Vehicle Analysis
and Simulation Laboratory using a VC Super VHS stereo video cassette recorder and a 20-
inch Sony Trinitron color monitor. This system was used to playback segment recordings of
different drivers at various levels of drowsiness. The segments were dubbed onto two
separate tapes. The segments to be dubbed were located using a Panasonic VHS stereo video
cassette recorder and a 20-inch General Electric color monitor. Once located, the segments
were transferred from tape to tape using a VC Super VHS camcorder and the VC Super
VHS stereo video cassette recorder mentioned above. After all segments were transferred
from one tape to the other. the tapes were audio dubbed using the JVC Super VHS stereo

video cassette recorder.
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The scale used to perform the rating task was aform of the Likert Scale known asa
Descriptive Graphics Scale. The continuous scale consisted of five descriptors: Not Drowsy,
Slightly Drowsy, Moderately Drowsy, Very Drowsy, and Extremely Drowsy. There was one
scale for each segment totaling 48 scales (24 scales for each session). However, for the
experiment, each scale was on a separate dlip of paper, approximately 22 cm wideand 7 cm
high to avoid influences from previous scores.

A Macintosh |1 personal computer was used to analyze the data from this experiment.
SuperANOVA 1.11 and Microsoft Excel 3.0 were used to perform statistical analyses of the
resulting data.

Experimental Design

The experimental design used in this study was a single factor within-subject complete
factorial design. The single factor was rater. This main factor (with six levels) was treated as
the independent variable. By treating rater as the independent variable, each cell of the
experimental design contained 48 replications of the rating task. In this experimental design,
Subject was awithin-rating-task variable rather than rating-task being a within-subject
variable. The dependent variables were the raw-error-rating-scores. In both cases, errors
were defined as differences from the mean across raters. There were 48 scores per
experimental cell giving atotal of 288 data points.

The 48 segments to be rated were divided into two groups and then recorded onto two
video tapes (24 segments per tape). The segments represented various levels of
aertness/drowsiness and were assigned to a location on the tape. One tape was presented
during the first session and the other tape was presented during the second session, which
occurred approximately one week after the first session. A counterbalanced design was used
in which half the raters received Tape A first followed by Tape B, while the other half of the
raters received Tape B first followed by Tape A. Raters 1,2 and 3 (two males and one
female) received Tape A then Tape B while raters 4, 5 and 6 (two females and one male)
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received Tape B then Tape A. The reason for having two video tapes separated by one week
was to allow the determination of test-retest reliability.

Intrarrater reliability. On each of the tapes, three of the segments were repeated on that
same tape. On Tape A, Segments 3, 8, and 10 were repeated as Segments 23, 18, and 19
respectively. Likewise, on Tape B Segments 3, 8, and 10 were repeated as Segments 23, 18,
and 19, respectively. During a particular session, the rater was exposed to the three segments
twice. The repetition of segments gave six sets (pairs) of scores for each rater which were
used to determine intrarrater reliability.

Test-retest reliability. Inaddition to having three of the segments repeated within each
session, three different segments from the first session were repeated in the second session.
Segments 5, 12, and 20 from Tape A were repeated as Segments 20, 12, and 5, respectively,
on Tape B. Therefore, each rater was exposed to these three segments a second time during
Session 2. This procedure of repeating segments gave three pairs of scores per subject for
usein determining test-retest reliability.

Interrater reliability. To determineinterrater reliability, all repeated segments and the
first segment (the practice segment) were temporarily deleted from the data. Only those
segments that were not repeated were used in the statistical analysis. After deleting the
repeated segments, there remained 28 segments per rater (14 segments from each session).
Procedure

Onthefirst day of the experiment, the rater was asked to read the general instructions
for the experiment. These instructions described the nature of the experiment, the tasksto be
performed, and the approximate length and timing of the two sessions. The instructions
made it clear that the rating scale was a continuous one and that the rater could place arating
anywhere on the scale, not just at one of the descriptors. Once the instructions were read, the
rater was asked to read the informed consent form and sign the form if he or she agreed to the
conditions of the study. Any questions concerning the instructions, the informed consent

form, or the experiment in general were answered. The rater was then seated in front of the
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video recorder and monitor. At this point the experimenter reviewed the instructions and
gave additional instructions. These additional instructions included showing the rater the
rating forms, giving examples of how to correctly mark the scales, and providing the rater
with the “ Description of Drowsiness Continuum” form. This form contained a description of
the various levels of drowsiness and gave an idea of the characteristics to look for when
rating the segments, The rater read the description form before the experiment began and
was also alowed to refer back to the description form during the experiment. Once all
questions had been answered, the first experimental session began.

When the rater returned after approximately one week for the second session, the
written instructions were offered for review. Once the instructions were reviewed the
experimenter asked the rater to review the Description of Drowsiness Continuum form.

Experimental task procedures. The rating task consisted of viewing 24 segments of
different drivers at various levels of drowsiness for each session and subjectively rating each
segment on its corresponding rating scale form. When the experimental session began, the
first videotaped image appeared on the screen. A short time thereafter, a recorded voice
instructed the rater to begin the evaluation for that segment. For example, at the beginning of
Segment 1, the rater heard “ Begin, Segment 1." This command informed the rater that the
evauation period for segment 1 had begun. The rater observed the videotaped driver until a
second voice command, “ End, Segment 1” was given. (The length of the evaluation period
was one minute.) The “ End” command informed the rater that the evaluation period was
over and that arating on the scale was to be provided. The rater observed the beginning of
the videotaped image prior to the “ Begin, Segment __ " command, but was instructed to only
rate the interval between the “ Begin” and “ End” commands.

After the® End” command was given, the segment continued for 15 seconds, but the
rater did not evaluate this section. Once the 15 seconds had elapsed, the screen went blank
for 10 seconds before the next segment appeared. The rater used the last 15 seconds of the

segment and the 10 seconds of blank screen in between the segments (totaling 25 seconds) to
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provide arating.- If thisamount of time was insufficient, the rater asked the experimenter
(who sat behind the rater) to pause the tape until the eval uation was completed. This pausing
technique allowed the rater to refer to the Description of Drowsiness Continuum sheet. Once
the rating was accomplished, the experimenter restarted the tape. The rater could also change
an answer if desired, but only if the rating was changed before the next segment started.
(Only the current segment rating could be changed.) The rater was not permitted to go back
to a previous segment to change arating. The sequence continued until al 24 segments had
been rated.
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RESULTS

Thefirst step in analyzing the data was to convert the subjective scores on the rating
scale to anumerical value. This task was accomplished by converting the scale to a hundred
point scale and then measuring the location of the given rating. The second step was to pair
the repeated segments to perform the correlations on these data. The third step wasto
eliminate the paired data points and the practice segment from the original data set. The final
step was to convert the original data scoresinto raw error rating scores and absolute error
rating scores. The mean of each segment was determined and ranked from low to high. Each
subject’ s raw data were then plotted against this ranking, as shown in Figure 3. The graph
suggests that there wasllittle, if any, error of central tendency in the experiment. Error of
central tendency refersto placing ratings in the middle of the scale and avoiding extreme
positions. It can be seen from the graph that subjects rated at both the low ends and the high
ends of the scale as well as near the middle.

Theraw error scores were obtained by subtracting each segment’ s mean score from
the score given by each rater. Because there is no numerical (or objective) definition of
drowsiness, an independent variable did not exist for this experiment. Therefore the raters
scores were compared to the mean segment score to determine consistency of the scores. The
absol ute error scores were obtained by taking the absolute value of the raw error scores.
Thus, 28 raw error scores and 28 absolute error scores were derived for each subject resulting
in atotal of 168 raw and absolute error scores across all six subjects. Because of the way the
error scores were calculated, a positive error score indicated that the segment was overrated
compared to the segment mean rating and a negative error score indicated that the segment
was underrated compared to the mean rating for that segment.

Four different correlations and four paired t-tests were performed on the data. The
criterion for acceptability for the correlations was 0.80. The first correlation compared first

exposure to second exposure for the segments that were repeated within a session. As
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mentioned, three segments were repeated in Session 1 and three segments were repeated in
Session 2. Therefore, six pairs of data points per subject existed, giving atotal of 36 data
pairs with which to perform the correlation. This correlation was used to determine if raters
tend to be consistent within themselves when scoring segments during the same time period.
The measurement is an indication of intrarrater reliability. A paired t-test was also
performed.

The second correlation was performed to determine the relationship between first
exposure ratings and second exposure ratings from session one only. There were 3 data pairs
per rater (atotal of 18 pairs) for this correlation. The third correlation was also used to
determine the relationship between first exposure ratings and second exposure ratings, but
these data came from session two. Again, three data pairs per rater, giving atotal of 18 pairs
of data, were used to calculate the correlation. Both of these correlations are indications of
intrarrater reliability, but the sessions were analyzed separately to determineif a
fatigue/learning effect existed. Once computed, the correlations were compared to one
another to determine if a significant difference existed. Separate t-tests were performed on
each of the two sets of data.

The fourth correlation was performed to determine test-retest reliability. The three
segments from session one were paired with the corresponding repeated segments from
session two. The three pairs per rater gave atotal of 18 pairs with which to determine if
raters consistently rated segments at two different pointsin time (i.e., over aweek’ s period).
A fourth r-test was performed on the data to determine if the difference between pairs was
significantly different from zero.

An additional correlation analysis was performed as part of the interrater reliability
analysis. Itinvolved correlating the raw ratings of each rater with every other rater, asa
means of quantitatively assessing consistency.

Two Analyses of Variance (ANOVAS) were conducted on the data. The first ANOVA

compared the raw error rating scoresin each experimental cell to determine if there were any
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biases in subject-ratings. Positive biases are indicative of atendency to overrate segments as
compared to the mean rating for that segment, while negative biases are indicative of a
tendency to underrate segments as compared to the mean rating for that segment. In short,
this analysis was used to determine if the subjects rated the segments consistently from one
observer to the next. The analysis gave an indication of inter-rater reliability.

The second ANOVA compared the absolute values of the raw error rating scoresin
each cell to the mean of the segment. This measure made it possible to determine each
subject’ s score deviation from the mean segment rating. Clearly, absol ute error rating scores
that are close (or equal) to zero indicate accuracy of rating with respect to the mean, whereas
absolute error rating scores that are greater than zero signify less-than-accurate ratings with
respect to the mean. Thus, the ANOVA indicated whether a difference existed in score
deviations from the mean when comparing subjects.

Post-hoc analyses of significant main effects were performed using the Newman-Keuls
pairwise comparison technique. This procedure was used to determine exactly which
observerswere significantly different from one another on the rating task.

The Pearson r correlation procedure gave a correlation value of 0.88 (t = 10.92, d.f. =
34) for intrarrater reliability. This value was significant (p< 0.001). This result indicates
that raters consistently rated the level of drowsiness when asked to rate the same segment
twice. The paired t-test gave avaluet = 0.032 (d.f. = 35); p> 0.20.

jon 1 Correlation v jon 2 Correlation

The comparison between the two correlations did not show asignificant difference.
The correlation value for Session 1 was 0.93 and the correlation value for Session 2 was 0.85.
Both these correlations are significant (p < 0.001; t = 9.98, d.f. = 16 for Session 1 and t =
6.35. d.f. = 16 for Session 2). Comparison of the two values indicated that they did not differ

significantly from one another (p = 0.1335).This comparison suggests there was no learning
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effect from Session 1 to Session 2. The t-tests performed on these data were not significant
(p>0.20; t=-0.46, d.f. = 17 for Session 1 and t = 0.33, d.f. = 17 for Session 2). The results
of the t-testsindicate that the differences within data pairsin both sets of data were not
significantly different from zero.

s of Test lichili

The correlation value for test-retest reliability as determined by the Pearson r correlation
procedure was 0.81 (t = 5.45, d.f. = 16). This value was significant (p < 0.001) and indicates
that raters consistently rated the level of drowsiness when asked to rate the same segment
twice with a given period of time (i.e., one week) separating the two exposures. The paired t-
test yielded the value t = 0.66 (d.f. = 17) which is not significant (p > 0.20), indicating that the
differences within pairs of datawere not significantly different from zero.

The ANOVA performed on the raw error scores revealed a significant main effect of
rater (F =5.159, p = 0.00 1). This effect indicates that raters demonstrate differential biases
when rating the level of alertness/drowsiness. Raters 1, 2, and 5 tended to underrate the
level of drowsiness with respect to the mean and raters 3, 4, and 6 tended to overrate the
level of drowsiness (Figure 4). Post-hoc analysis using the Newman-Keuls technique (a =
0.05) revealed which raters were significantly different from one another. Rater 3 (mean =
8.17) rated significantly different from raters 1 (mean = -6.90), 2 (mean =-3.94) and 5
(mean = -4.65). Raters 3 tended to overrate as compared to the mean while raters 1, 2, and
5 tended to underrate. Rater 4 (mean = 3.78) rated significantly higher as compared to the
mean than rater 1 (mean = -6.90). Rater 6 (mean = 3.53) rated significantly higher than
raters 1 (mean = -6.90) and 2 (mean = -3.94). Surprisingly, the Newman-Keuls post-hoc test
did not show a significant difference between raters 6 and 5. The test also did not show a
significant difference of rater 4 and raters 2 or 5. The differences in the means of these

raters are greater than other differences in means which are significant, and seem to be an

36



10 T

Mean Rating Error

Figure 4:

8.17

Subject Number

Mean Rating Error as a Function of Observer. (Mean ratings having common
letters do not differ significantly, a = 0.05)

37



artifact of the Newman-Keuls post-hoc test. If onerater isremoved and thetest is
readministered using only 5 raters, then the above mentioned non-significant differences
become significant. For example, if rater 2 isremoved from the data, then rater 4 is
significantly different from rater 5. If rater 5 isremoved, rater 4 becomes significantly
different from rater 2. And, if thetest is performed after removing rater 4, rater 6 is
significantly different from rater 5. These observations indicate that the above mentioned
subjects should be considered as significantly different from one another. Accordingly, the
raters then fall into two groups that are significantly different from one another.
Descriptively speaking, the means ranged from -6.90 to 8.17. The average standard
deviation across all raters’ scoreswas 12.5. Thisvalue is an indication of the spread of
ratings that can be expected anytime an observer performs arating on the level of drowsiness.
Analys's of Absolute Error Scores
The ANOVA performed on the absolute error scores revealed no significant effect of
Subject, F(5,135) = 1.537, p = 0.1929. This result suggests that individuals tend to display
the same accuracy when it comes to rating the level of drowsiness. The mean absolute rating
error for each subject is depicted graphically in Figure 5. (The reader is cautioned however
that differences are not statistically significant.) The average mean absolute rating error
across al raters was 10.85. Thisvalue is an indication of the expected magnitude of error

(from the mean) for a subject rating the level of drowsiness.
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DISCUSSION ANDCONCLUSIONS
Lnterpretation of Resilts

The correlation values for intrarrater reliability and for test-retest reliability were
greater than 0.80 indicating that raters tended to be consistent within themselves. Intrarrater
reliability correlation (0.88) was slightly higher than test-retest reliability correlation (0.81)
and suggests that the raters may lose asmall amount of consistency over time. However,
according to the statistical test to determine if alearning/fatigue effect existed between
Session 1 and Session 2, the two correlations were not significantly different.

It is not surprising to find that there was a significant rater main effect in the ANOVA
that was performed on the raw error rating scores. However, the previously mentioned study
by Carroll et a. (1989) indicated that interrater reliability was high for observers studying the
disturbances of the sleep-wake cycle. The rater main effect indicates that raters demonstrate
differential biases when rating the level of drowsiness. Variability between raters can most
likely be attributed to differences in individual definitions of drowsiness. Even though each
rater was provided with the same Description of Drowsiness Continuum form, the
interpretations of these descriptions may vary across raters.

According to the Analysis of Variance performed on the absolute rating error scores,
raters absolute error rating scores were not significantly different from one another. This
result suggests that informed raters tend to display the same accuracy when it comesto rating
the level of drowsiness.

Conclusions of the Study

The results from this study indicate that there is a good degree of consistency among
and within raters when rating the level of drowsiness using videotaped segments of drivers
faces. The intrarrater reliability and the test-retest reliability indicate that raters are consistent
within themselves. Even though the ANOVA of the raw error rating scores showed a
significant effect of rater suggesting that inconsistent biases in ratings exist between raters,

one must look at the spread of the means of raw error rating scores as compared to the scale
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used. The means ranged from -6.9 to 8.17 giving a spread of approximately 15 points. Very
small increments were used for the divisions on the scale used to convert the ratings to
numerical values. The distance between any two descriptors on, the scale was 25 points. The
15 point spread of means constitutes only 3/5 of the distance between one descriptor and the
next. Furthermore, the ANOVA performed on absolute ratings as a function of rater was not
significant. Therefore, a good degree of consistency is present between raters when rating
the level of drowsinessin this study.
Finally, it is clear that the ratersin this study were willing to use the entire scale.

They ascribed widely different values to what they observed in the various videotaped
segments. These findings, along with the reliability findings, suggest that ratings of
drowsiness by informed raters do consistently discriminate between presented conditions.
Indications of Validity

The previously described experiment shows that there is consistency and reliability in
the ratings produced. However, the experiment does not and cannot indicate the extent to

which the raters are rating the “‘ true drowsiness level,” since drowsiness is not a precisely or
numerically defined quantity. It will be recalled that individual rating errors had to be
defined in terms of deviations from the mean of all the raters. because thereis no universal
definition of drowsiness or drowsiness level. How, then, does one determine the validity of a
drowsiness assessment procedure, such as that obtained from the rating process described in
this paper? Or in short, how does one establish validity?

There are several approachesto validity. One approach is to apply the rating procedure
to an actual or operational situation and determine whether the procedure “ measureswhat it is
supposed to measure” (Ghiselli, 1964). Thisis an application-oriented approach. Another
possible approach isto compare the rating procedure to other supposed indicators of
drowsinessin a controlled experiment. Such indicators might be physiological, performance

based, or subjective. If it can be shown that the candidate assessment method provides
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results that covary with a variety of other known indicators, then the new method reflects
changes associated with the common independent variables.

To provide answers to questions about validity, an additional, new experiment was
conducted. Briefly, the experiment involved having sleep-deprived subjects perform
aternating letter search and arithmetic tasks on a computer screen while a variety of
measures were taken (Ellsworth, Wreggit, and Wierwille, 1993). The various measures were
then correlated with informed-rater drowsiness ratings using a procedure identical to that
described in this paper.

Typical results are shown in Table 4. As can be seen, correlations of rater ratings with
eye closure and subject ratings are high, and correlations with physiological and performance
measures are moderate. The results are for eight subjects and four raters. Three of the eight
subjects did not exhibit any signs of drowsiness whatsoever. When they were eliminated
from the data analysis, correlations values increased. These results, taken together, support
the validity of rater assessment of drowsiness, and suggest that rater assessment isaviable

method of drowsiness assessment when a video image of the vehicle operator is obtainable.
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Table 4: Correlations of Rater Drowsiness Ratings with Other Indicators

PERCLOS AVECLOS EYEMEAS  SUBRATE RTMTHCOR RTLTCOR
0.711 0.911 0.875 0.833 0.322 0.547

MNALPHA  MNTHETA  ABRATIO THREOG MNHRT MNSQHRT

0.568 0.567 0.468 0.483 -0.547 -0.525
Indicator Measures

PERCLOS. percent time that the eyes were more than 80 percent closed

AVECLOS. mean percent eyeclosure

EYEMEAS. mean square of percent eye closure

SUBRATE: subject on-linerating of drowsiness using an adjustable bar-knob control

RTMTHCOR: mean time to correct response in the math task

RTLTCOR: meantimeto correct responsein the letter search task

MNALPHA: mean amplitude of the EEG a phawave, measures at the occipital lobe.

MNTHETA: mean amplitude of the EEG theta wave, measures at the occipital lobe.

ABRATIO: ratio of MNALPHA to mean amplitude of the EEG beta wave, measured at
the occipital lobe

THREOG:  percent time that the electroocul ogram was above a set threshold (indicating
eyeblink or eyeroll or both)

MNHRT: mean of instantaneous pulse rate

MNSQHRT: mean square of instantaneous pulserate




Chapter Three
Initial Drowsiness Definition Experiment:
The Development of NEWDEF
(This chapter represents an extended summary of work reported in the Third
Semiannual Research Report, data April 10, 1993 and referred to as Ellsworth,
Wreggit, and Wierwille, 1993)



INTRODUCTION

This study focused on the development of an operational definition of drowsiness
based on a combination of slow eyelid closure and other physiological measures. Although
dow eyelid closure is avery accurate operational definitional of drowsiness, more accuracy
may be gained if other measures are “blended” with Slow eyelid closure measures. The
primary limitation of the slow eyelid closure measuresis that drivers may not exhibit this
behavior until they are severely drowsy and/or impaired. Therefore, the purpose of this
study was to determine if other physiological measures, used in conjunction with slow eyelid
closures, could be used to create an enhanced definition of drowsiness. If such ablend could
predict performance under avariety of apparent drowsiness levels, then it could serve asan
aternative definition of drowsinessin the algorithm devel opment study.

The Virginia Tech driving simulator was used for the experiment, however, the
subjects in the experiment did not drive. Instead, the subjects viewed the simulator display
and performed two types of tasks which were presented on the display. Push-buttons on the
steering wheel were used by the subjects to respond to the two tasks.

A detection task (low-level cognitive task) consisted of agroup of random-|etter
characters being displayed on the screen. I the subject detected one of the two target
characters, the subject pressed the “yes’ push-button located on the steering whesl. If none
of the target | etters were present in the field, the subject pressed the “no” push-button.

An arithmetic task (high-level cognitive task) consisted of mathematical problems that
had numerical integers for answers. The subject was instructed to press the “even” push-
button located on the steering wheel if the answer to the problem was even and to pressthe
“odd” push-button located on the steering wheel if the answer to the problem was odd.

Correlation analyses and multiple regression were performed on the collected data. The
purpose of the correlation analyses was to determine which measures could reliably detect

performanceimpairment.
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The purpose of the multiple regression analyses was to determine linear combinations
of the impairment detection measures that would best predict impairment resulting from
drowsiness. Multiple regression analyses were conducted on the physiological measures
most highly correlated with performance measures to determine linear relationships between
measures to predict performance impairment (due to drowsiness). Upon completion of the
multiple regression analyses, various algorithms had been devel oped that contained a

combination of slow eyelid closure measures and other physiological measures.
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METHOD
Subjects

Eight subjects (four males and four females) volunteered to participate in this study.
All potential subjectsfilled out a questionnaire regarding driving habits and sleeping habits
before the experiment was run. Individuals who were not prone to drowsiness (found
through use of the questionnaire) and those exhibiting pathological sleep disorders were not
used in the experiment. In addition, potential subjects who were heavy smokers (more than
three cigarettes per day) were not considered. The decision to exclude heavy smokers was
made on the basis that these individuals would not be permitted to smoke for a substantial
period of time (from approximately 7 P.M. to 3 A.M.). All subjects were required to have
20/30 corrected vision.

Apparatus

Figure 6 shows the equipment arrangement for the drowsiness experiment. Items of
equipment are discussed separately in the following sections.

Smulator, The smulator used for the proposed research was a computer-controlled,
moving-base automobile driving simulator located in the Vehicle Analysis and Simulation
Laboratory. However, subjects did not drive this driving simulator. The simulator remained
static during the entire experiment. The subjects viewed the simulator display with the lens
system removed the usual display generation equipment disconnected. Specific tasksthat the
subjects were required to perform were exhibited on the simulator display. The steering
wheel of the simulator had two push-buttons the subjects were to use to complete the tasks.
Signals from the steering wheel push-buttons were sent to an IBM-PC for data collection.

|BM-PC Computer and Metrabyte PIO-2 Logic Interface Card. An IBM-PC

generated the tasks on the simulator display. A new task appeared every 10 seconds. Task
generation was accomplished using a program written in the BASICA programming

language. The tasks were simultaneously displayed on the PC display and the simulator
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display. Two typesof tasks (amathematical task and a letter detection search task) were
generated alternately by the BASICA program and displayed on the monitors.

The PC was also used to collect the subject responses to the tasks. When a subject used
the push-buttons located on the steering wheel of the simulator to complete the displayed
task, asignal was sent to the IBM-PC via a Metrabyte PIO-2 8-channel logic interface card.
The computer was programmed to recogni ze the button presses and record whether the
responses were correct or incorrect. After every one-minute period, the PC stopped
collecting data and calculated the number of correct responses, incorrect responses, and no
responses for the mathematical task, the number of hits, misses, correct rejections, false
alarms, and no responses for the detection task, the average response time for both types of
tasks regardless of whether the response was correct or incorrect, and the average response
time of correct responses for both task types. For the detection task, the average response
time for correct response was split into average response time of correct response and average
response time of correct rejection. These two averages were calculated separately.

Another function that the IBM-PC performed was to send signalsto a WIN 486-33i,
microcomputer telling the WIN when to start and when to stop collecting data. A high logic
signal telling the WTN to start collecting data was sent as soon as the PC program started. At
the end of each minute, the PC sent alow signal to the WIN telling it to stop collecting data
and to complete calculations, store the results, and clear. At the beginning of the next
minute, the PC sent a high signal telling the WIN computer to once again begin data
collection. This sequence continued for the entire study.

Thefourth function that the IBM-PC performed was to send signals to an LED mounted
in front of the low light level camera shooting the subject’sface. A low signal was sent at the
end of each one-minute segment. When the low signal was sent, the LED turned on and
indicated on the videotape that a one-minute interval had ended. Thislow signal wasthe
same signal that told the WIN to stop collecting data, to complete calculations, store the
results and clear. The LED stayed on until the calculations had been completed. Once the

49



calculations had been completed, a high signal was sent which turned the LED off. This high
signal wasthe same signal that told the WIN to once again start the data collection process

for the next one-minute duration.

The WIN 486-33i microcomputer collected data viaan AT-MI0O-16 interface card on the
following physiological measures - heart rate, eyeball roll, muscle tension, alpha, beta, and
theta wave amplitudes, and eye closure measures. Physiological data were received either
from preamplifiers which were connected to el ectrodes placed on the subject, or from a direct
line from a closed circuit television for the eye closure measure. Before data collection
began, the WIN received asignal sent from the IBM-PC viathe AT-MIO-16 interface card.
The WIN was programmed using a QuickBA SIC software package to recognize the signal
from the PC as an indication to start collecting data. After a one-minute interval, another
signa was received from the PC and recognized by the WIN computer as an indication to
stop collecting data, compute calculations, store data, and clear registers to prepare for a new
data collection interval. The WIN computer continued to receive the signal's mentioned
(from the PC) at every one-minuteinterval throughout the experiment.

The calculations that the WIN program performed at the end of aone-minute interval
were mean heart rate, mean squared-heart rate, heart rate standard deviation, heart rate
variance, the proportion of the time that the eyes were 80% or more closed, the average
percent that the eyes were closed during the one-minute period, the squared value of the eye
closure, the proportion of time the eyerolls were outside a threshold value, the number of
times the eyerolls fell outside the threshold value, mean alpha wave signal, mean beta wave
signal, mean theta wave signd, the ratio of alphato beta, the ratio of theta to beta, the ratio of
aphaplustheta to beta, mean EMG signal, the mean subjective rating of drowsiness, the
mean square subjective rating, the subjective rating standard deviation and the subjective

rating variance.
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Skin electrodes. Biopotential skin electrodes were placed in various locations on the
subject to gather physiological data such as eye roll, muscle tension, apha, beta and theta
wave amplitudes and skin potential. All signals from the electrodes except those for the skin
potential passed through a GRASS high performance preamplifier system before reaching the
COMDY NA signal processor. The preamplifiers feature high gain, adjustable filters, low
noise and an output that can be interfaced with computers.

Eye roll measures were obtained using el ectroocul ography (EOG) viathe skin
electrodes placed around the eyes. Because of the constant el ectropotential difference
between the front and the back of the eyeball, movement of the eyesis easily measured using
electrodes placed on the skin surrounding the eyes.  Two electrodes were used to collect the
data. One electrode was placed on the right outer canthus (ROC) area (the temple area of the
right eye) and the other electrode was placed about two centimetersinside the left outer
canthus area. The electrodes were offset from the horizontal midline of the eye by
approximately one centimeter with the ROC electrode being above the horizontal midline and
the LOC electrode being below the horizontal midline. Positioning of the electrodesin this
manner allowed the detection of both horizontal and vertical eyeball movements.

A measure of muscle tension was obtained from electromyography (EMG) through
electrodes placed on the chin and jaw area. Specifically, one electrode was placed on the
chin and one €lectrode was placed under the jaw near the platysmamuscle. This latter
electrode was offset from the vertical midline of the face by approximately three centimeters
and was located on the |eft side of the jaw. These electrodes were intended to detect alack of
muscle activity as the facial muscles became relaxed.

Alpha, beta. and theta wave amplitude measures were obtained by passing EEG signals
(from the GRASS preamplifiers) through bandpass filters and detectors programmed on the
COMDY NA processors. Two €electrodes were applied to the occipital region of the scalp to
record the brain wave activity. To obtain acceptable connections, the electrodes were placed

and taped (using adhesive pads) to the subject’ s scalp after the hair had been parted in the
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occipital region. A headband fitted from the back of the head , over the ears and around the
forehead was used to supplement the adhesive pads in holding the electrodesin place. (This
procedure was followed so that it would be unnecessary to shave small patches of hair from
subjects.)

The skin potential was measured using two electrodes — one was placed on the |eft
forearm closer to the inside of the elbow and the other was placed on the | eft forearm closer
to the wrist. Readings were made using a MICRONTA digital multimeter which allows
direct measurement of DC skin potential level without the use of DC preamplifiers and
amplifiers. This potential level was not collected by the WIN computer. Instead, one of the
experimenters read and recorded the skin potentia level 30 seconds into each one-minute
interval. (Skin potential is a slowly varying voltage.)

A “common” electrode was located on the subject’ s forehead just below the hair line.
All electrode wires were taped, drawn to the back of the head and bundled in a pony-tail like
fashion behind the head. The wires were kept out of the subject’ s view and hopefully, were
fairly unobtrusive.

Ear plethysmograph Measures of heart rate and heart rate variability were collected
using an ear plethysmograph and commercial heart rate monitor (Hewlett-Packard 7807C).
This form of measurement was easy to implement and was unobtrusive to the subjects. The
data collected from the plethysmograph was passed through the COMDY NA processors for
signd level amplification before reaching the WIN viathe AT-MIO- 16 interface card.

Clased circuit television A low-light level closed-circuit television camera (RCA
TC 1004-U01) was used to continuously monitor the eye closures of the subjects. This video
camera shot the subject’ s face and eyes and was placed in such alocation that the subject’s
view was not obstructed. The image after passing through a VCR appeared on a Sanyo VM
45 12A monitor so that one of the experimenters could manually track the eyelid closures
using alinear potentiometer. The track signal from the linear potentiometer was sent to the

WIN viathe AT-MI0O-16 interface card after processing by the COMDY NA processor.
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A General Electric Hi-fi Audio HD VHS video cassette recorder recorded the image of
the subject’ sface for later analysis by behaviorally trained raters. Because the camera and
recording required no additional lighting and was placed in an inconspicuous position, the
described setup resulted in an unobtrusive way of measuring the subject’ s eye closure.

Subjective rating device. A continuous, rotational control was used to collect the
subjects’ feelings of drowsiness. It was |located to the right of the subjects' right leg, in the
horizontal plane. The continuous control was labeled “drowsiness,” and had “ Max,” “Mod,”
and “Min" markings. In addition, there was a single marker line between each of the above
settings.  The subjects rated themselves during the experiment in terms of the drowsiness
level that they felt. The subjects were asked to change the rating device setting any time they
felt the level of drowsiness had changed. This signal was sent to the WIN viathe AT-MIO-
16 interface card after processing by the COMDY NA processors.

Experimental Design

The experimental design used in this study was a single factor within-subject complete
factorial design. The main factor was time-on-task (four levels). The first level was the first
30 minutes, the second level was the second 30 minutes, and so on. During each of the four
30 minute segments, subjects were exposed to a different sequence of aternating
mathematical and search tasks. There were four separate sequences of tasks for the four
levels of time-on-task. Each of the eight subjects received dl levels of the main factor.

A counterbalanced design was used to control for order effects of the four task
sequences. Four subjects were randomly assigned to the presentation order of the four
sequences of tasks using a L atin square design. The remaining four subjects were randomly
assigned to the conditions of a second Latin square.

Twenty-one dependent variables were collected during the experiment. These variables
consisted of the following:

1 Heatrate

2. Eydidclosures
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10.
11
12.

13.
14.
15.
16.
17.
18.
19.

20.
21.

Procedure

EOG readings

EEG readings- aphawaves, beta waves and theta waves

EMG readings

Skin potential readings

Subject rating — having the subjects rate themselves on the level of drowsiness
they were experiencing

Rater rating — having a behavioraly trained raters analyze the subjectsin terms
of the level of drowsiness (post experiment, using videotapes)

Number of correct responses for the mathematical task

Number of incorrect responses for the mathematical task

Number of no responses for the mathematical task

The average response time for the mathematical task — regardless of whether the
response was correct or incorrect

The average response time of correct responses for the mathematical task
Number of hits for the search task

Number of misses for the search task

Number of correct rejections for the search task

Number of false alarms for the search task

Number of no responses for the search task

The average response time for the search task - regardless of whether the response
was correct or incorrect

The average response time of correct responses for the search task

The average response time of correct rejection responses for the search task

Subject procedure. Each subject who passed the screening tests was asked to read the

general instructions for the experiment and read and signed an informed consent form. Any



questions concerning the instructions, the informed consent form, or the experiment in
genera were answered (both prior to and following signing the form).

Each subject participated in one session which lasted about nine hours. The subjects
arose at 7 A.M. or before on the established experiment day and went through their normal
daytime activities without resting or napping. At 6 P.M., amember of the experimental team
picked the subject up at his or her residence. The team member took the subject to afast
food restaurant for dinner. The beverages consumed were limited to non-caffinated and non-
sugared drinks. The subject was permitted to smoke during or immegdiately after dinner after
which time the subject was taken to the Vehicle Analysis and Simulation Laboratory. The
subject was allowed to read, study, watch TV, or listen to a personal headset stereo. The
subject was not allowed to take naps, eat, smoke, or drink caffmated or sugared beverages.

A research team member remained in the lab to ensure that the subject remained awake
throughout the evening. Just before midnight, the subject was given the instruction sheet and
informed consent form to reread.

At midnight, the experimental session began. Two new experimenters placed the
subject in the simulator and verbal instructions were given. The subject was then given aten
minute practice session. Once the practice session was completed, the physiological
monitoring equipment was fitted to the subject, the lights were dimmed, and the data
collection began. When the two experimenters felt the equipment was ready to go, the lights
were dimmed and the experiment was begun. The subject performed the tasks on the screen
for the entire experiment, which took approximately 130 minutes. If the subject fell asleep
during the data collection period, one of the experimenters woke the subject and asked him or
her to continue with the experiment.

At the end of the experiment, the physiological monitoring equipment was removed
from the subject. The subject was debriefed. paid, and then driven home by one of the

experimenters.
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Experimental task procedures. The experimental tasks that the subjects were required
to perform consisted of two alternating tasks — a mathematical task and aletter search task.
The mathematical task was considered a higher level cognitive task and the letter search task.
was asimpler, lower level cognitive task.

The mathematical tasks consisted of addition, subtraction, multiplication and division
problems displayed on the simulator screen. Examples of these types of problems are 7x8 =
_,25/5=__,10x__ =30,5- =20,258=__. Eachproblem had a numerical integer
for an answer. The subject was required to solve the problem, decide whether the answer
was odd or even, and then press the corresponding push-button on the simulator steering
wheel. The task, as it appeared on the simulator screen, is shown in Figure 7.

The letter-search-task consisted of agroﬁp of letter characters displayed on the
simulator screen. The letters were randomly selected and were placed in random locations on
the screen. The subject was required to detect one of two target letters (A or B). If either
target |etter was detected, the subject wasto pressthe “yes’ push-button on the simulator
steering wheel. If no target letter was detected, the subject was to press the “no” push-button.
Figure 8 shows an example of the letter search task asit would appear on the simulator
screen.

When the experimental session began, the two tasks were alternately displayed on the
simulator screen. Each task took approximately 10 seconds before the next task appeared. If
the subject did not respond to the displayed task, the task remained on the screen for the
entire 10 second period. If the subject responded to the task, a feedback remark was
displayed on the screen for the remaining time in the 10 second period. Examples of remarks
that were used for correct responses were “ GOOD JOB,” “EXCELLENT” and “ WAY TO
GO". For incorrect responses, examples of feedback remarks used were “ WRONG,” “Y OU
MISSED A LETTER” and “ TRY AGAIN”. This procedure continued throughout the entire

experiment.
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ODD

7xX8= _

EVEN

Figure7: Example of aMathematical Task (asit appeared on the simulator screen).
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YES

NO

Figure 8: Example of a Letter Search Task (as it appeared on the simulator screen).
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Severa data manipulation steps were performed before the data were analyzed. The
first step in manipulating the data was to eliminate or combine those measures that gave the
same information as another measure. For example, the sum of the math errorsisa
combination of the sum of wrong math responses and the sum of no math responses.

Therefore, the latter two measures can be eliminated and the sum of math errors measure can

be used as one of the performance measures. When this procedure was completed, the

following measures remained for the dataanalysis:

. PERCLOS:.  The percentage of time that the eyes were 80% to 100% closed over a one-
minuteinterval.

« AVECLOSE: Theaverage percent that the eyes were closed over aone-minute interval.

.EYEMEAS. The mean-square of the eyelid closure signal sampled over a one-minute
interval. (EYEMEAS is more heavily weighted as eye closure increases.)

« AVEOBS: The average drowsiness rating of four informed observersfor aone-minute
interval.

« MNSUBRAT: The mean subjective rating over a one-minute interval (The subject moved
acontinuous “drowsiness’ control marked with settings of maximum,
moderate, and minimum. There were additional scale markers between
minimum and moderate, and between moderate and maximum).

« SUMTHERR: The total number of math task errors over aone-minute interval (the
number of wrong math responses and the number of no math responses).

« SUMLTERR: The total number of letter task errors over a one-minute interval (the
number of wrong letter responses and the number of no letter responses).

« RTMTHCOR: The average response time to a correct math response over a one-minute
interval. In situations where subjects gave an incorrect response or did not

respond, avalue of 10 seconds was inputted for the response time. This
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« RTLTCOR:

« GLOBAL:

« MNALPHA:

. MNBETA:

. MNTHETA:

. ABRATIO:

. TBRATIO:

. ATBRATIO:

« MNEMG:

. THREOG:

value is the minimum amount of time in which a subject could have
responded correctly.

The average response time to a correct |etter response over a one-minute
interval. In situations where subjects gave an incorrect response or did not
respond, a value of 10 seconds was inputted for the response time. This
value is the minimum amount of time in which a subject could have
responded correctly.

Sum of SUMTHERR, RTMTHCOR, SUMLTERR, and RTLTCOR (data
were non-baselined).

The mean apha EEG amplitude over a one-minute interval. (The alpha
wave was defined as including those frequencies between 8 and 12 Hz.)
The mean beta EEG amplitude over a one-minute interval. (The beta wave
was defined as including those frequencies between 12 and 24 Hz.)

The mean theta EEG amplitude over a one-minute interval. (The theta wave
was defined as including those frequencies between 4 and 8Hz.)

Theratio of mean alphawave to mean beta wave amplitudes.

Theratio of mean theta wave to mean beta wave amplitudes.

Theratio of mean apha wave plus mean theta wave to mean betawave
amplitudes.

The mean EMG amplitude over aone-minuteinterval. (The EMG was
collected between 3 and 3000 Hz.)

The proportion of time that the eye-rolls go above threshold over a one-
minute interval. (Threshold was set so that substantial eye-rolls would be
detected).

« NUMRLBLK: The number of times the eye-rolls or blinks exceeded threshold over a one-

minuteinterval.
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. MNHRT: The instantaneous heart rate signal in beats per minute averaged over a one-
minuteinterval.

. MNSQHRT: The mean-square of the heart rate signal sampled over a one-minute
interval.

. VARHRT:  Thevariance of the instantaneous heart rate signal calculated for a one-
minuteinterval.

. SKINPOT:  Theskin potential voltage reading which was sampled 30 seconds into
every one-minuteinterval.

The second step was to cal culate two-minute intervals, four-minute intervals and six
minute intervals. The two-minute interval data were calculated by taking an average of the
datafor two one-minute intervals for each variable. For example, onerﬁi nute intervals one
and two were averaged to give two-minute interval one; one-minute intervals three and four
were averaged together to give two-minute interval two; and so on. The four-minute interval
data and six-minute interval data were calculated likewise except that an appropriate number
of segments were used for averaging.

Thethird step in the data manipul ation process was to delete some of the intervals from
the data set. Even though the subjects had a ten minute practice session before the actual
experiment started, two subjects missed two out of three math problemsin the first minute
and several other subjects missed at |east one math problem in the first or second minute
interval. Clearly, these mistakes were due to the subjects settling into the experiment and not
dueto drowsiness. For the one-minuteinterval data, the first two minutes of datawere
removed. For the two-, four-, and six-minute interval datathe first interval was discarded.
Note that the first interval for two-minute interval data consisted of the average of the first
two minutes of the one-minute interval data, the first interval for four-minute interval data
consisted of the average of the first four minutes of the one-minute interval data and the first
interval for six-minute interval data consisted of the average of the first six minutes of the

one-minute interval data. Therefore, two minutes were discarded for the two-minute interval
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data, four minutes were discarded for the four-minute interval data and six minutes were
discarded for the six-minute interval data.
Data AnalyssOverview

The data analysis for this research was composed of two major parts. The first part of
the analysis consisted of correlation analyses of all the data. The purpose of these analyses
was to determine which of the dependent variables could reliably detect impairment due to
drowsiness. The second part of the analysis consisted of linear multiple regression analyses.
The purpose of these regression analyses was to find one or more optimized linear
combinations of variables that would best predict impairment resulting from drowsiness.

Various physiological and performance measures were collected and computations
were made on line using the WIN 486-33i microcomputer and the IBM-PC. In addition, one
of the experimenters manually collected the skin potential level for every one-minute
interval, and atrained experimenter tracked the level of eyelid closure over each one-minute
interval.

Correlation analyses. Correlations were performed between the collected
physiological measures and the collected performance measures. For example, mean heart
rate and heart rate standard deviation were correlated with each collected performance
measure (i.e., the number of correct responses, incorrect responses and no responses for the
mathematical task). In addition, eye closure measures were correlated with all other
physiological measures.

Correlations were perforrned for one-minute intervals of data (118 data pairs), two-
minute intervals of data (59 data pairs), four-minute intervals of data (29 data pairs), and six-
minute intervals of data (19 data pairs). These intervals were calculated to determine whether
data collected over longer intervals provided greater reliability for drowsiness detection. The
studies by Dingus et al., 1985 and Hardee et ., 1985 found that in fact longer intervals (Six-
minute intervals versus three-minute intervals) were superior in the detection and prediction

of impairment.
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Several correlations were performed with the datain different configurations,
including: all subjectsall datafor one-minute intervals, two-minute intervals, four-minute
intervals, and six-minute intervals. “ Selecting” subjects/al data (data from subjects
demonstrating performance decrements for a specific performance measure to determine the
averaged correlation matrix) for one-, two-, four- and six-minute intervals; “ selecting”
subjects/pick & choose data (this method consists of using data from each subject and
categorizing that datainto high performance decrement, medium performance decrement,
and low performance decrement categories) for one-minuteinterval data.

Multiple regression analysis. Once the correlations were obtained, those showing
highest values were used to help construct possible “definitions” of drowsiness. Multiple
linear regression analysis was employed for definition development. The purpose of multiple
regression analysisisto produce an equation which can be used for prediction of agiven
measure at afuturetime.

Twenty-one performance and behavioral measures were collected and analyzed.
Sixteen of these measures were used to predict the degree of performanceimpairment. These
predictors of impairment were measures of eyelid closures, subjective self-ratings, observer
ratings, and task performance. Eight of the collected measures were evaluated for reliability
of performance impairment detection. These impairment detectors included heart rate, eyelid

closures, EOG, EEG, EMG, skin potential, subjective ratings, and observer ratings.
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RESULTS
Correlation Anaylses Results

It was found that the six-minute interval data were more reliable for drowsiness
detection than the one-, two- or four-minute interval data. For two types of data
configurations (all subject/all data method and the “selecting” subject/all data method), a
trend towards increasing correlations existed towards the longer averages. Table 5 contains a
summary of the six-minute correlation results. See Ellsworth, Wreggit, and Wierwille (1993)
for acomplete set of results.

In most cases, when the two data configurations are compared, the “selecting”
subjects/all data procedure produces some improvement in the correlations.

The pick and choose method was used in an attempt to balance a design between
drowsiness and non-drowsiness. The averaged “selecting” subjects/pick & choose
correlations using only those subjects showing performance decrements produced better
results than either the all subject/all data method or the “selecting” subject/all data method.

The pooled pick & choose method consisted of combining all individual subjects
pick & choose data together and running a correlation. In general, this procedure produced
poorer results as compared to the previous methods.

Regression Analyses Results

Regression models for the global performance measure showed multiple correlation
values (R) ranging from 0.76 to 0.86. The use of the GLOBAL measure alowed for the
development of an overall linear regression model to predict drowsiness.

Thefina regression equation recommended for use in further studiesto predict
performance impairment due to drowsinessis:

NEWDEF = 6.9 1500 + 18.45722(PERCLOS) - 0.01569(MNALPHA) +
0.020173(MNTHETA) - 0.00549(MNBETA) +
0.000698(MNSQHRT).

The corresponding regression summary is presented in Table 6.
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Table 5: Summary of the Six-Minute Correlation Results

PERCLOS AVECLOSE EYEMEAS AVEOBS MNSUBRAT | SUMTHERR | SUMLTERR | RTMTHCOR RTLTCOR
PERCLOS 1.0000
AVECLOSE 0.8506
EYEMEAS 0.9147
AVEOBS 0.7111
MNSUBRAT 0.6749
SUMTHERR
SUMLTERR 0.3109
RTMTHCOR 0.3253
RTLTCOR 0.5192 0.5546 0.5710 0.5471 0.4538 0.5629 0.4330 1.0000
MNALPHA 0.5442 0.5739 0.5678 0.5682 0.5271
MNBETA
MNTHETA 0.5363 0.5660 0.5642 0.5677 0.4755 0.3313 0.3554 0.4276
ABRATIO 0.6105 0.5078 0.5508 0.4683 0.4997 0.2522 0.3032
TBRATIO 0.3943 0.3810 0.3972 0.3660 0.3273 0.3258 0.3065 0.4144 0.4061
ATBRATIO 0.5858 0.5061 0.3440 0.4758 0.4887 0.3065 0.3264 0.3780
MNFMG
THREOG 0.3632 0.3236 0.4827 0.4247
NUMRLBLK -0.3281
MNHRT -0.5780 -0.6122 -0.6195 -0.5471 -0.4314 -0.2807 -0.2772 -0.4780
MNSQHRT -0.5660 -0.5951 -0.6032 -0.5252 -0.4137 -0.2718 -0.2696 -0.4630
VARHRT 0.2992 0.2558
SKINPOT
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Table 6: NEWDEF Regression Table

Regression Statistics

Multiple R 0.821551
R Square 0.674946
Adjusted R 0.663814
Square
Standard Error 1.863721
Observations 152
Analysis of Variance
df Sum of Squares  Mean Square F Significance F

Regression 5 1052.998 210.5996 60.63114 6.36E-34
Residual 146 507.1247  3.473457
Total 151 1560.123

Coefficients  Standard Error t Statistic P-value Lower 95% Upper 95%
| ntercept 6.915003  0.18183 38.02996 3.09E-79 6.555643 7.274363
PERCLOS 1845722 1584909 11.64561 9.06E-23  15.3249 21.58955
MNALPHA -0.01569 0002431 -645351 140E-09 -0.02049 -0.01088
MNTHETA 0020173 0.004716 4.277585 3.34E-05 0.010852 0.029493
MNBETA -0.00549 0.001599 -3.43482 0.000766 -0.00865 -0.00233
M-NSOHRT 0.000698 0.000296 . 2.353869 0.019867 0.000112 0.001283

(See pages 59, 60, and 61 for short definitions of independent measures. See page 82 for ft.111

definitions.)
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The regression results are best understood by studying Table 7. This table shows the
value of R and the number of termsfor both non-baselined and baselined data. The
“averages’ column shows that the use of al significant termsresultsin nearly equal R values .
for both non-baselined and baselined data (R = 0.77 in each case). However, the baselining
method used an average of 5.0 independent variables to achieve the regression model while
the non-baselining method used 7.8 independent variables. This suggests that the baselining
method can produce similar values of R with fewer independent variables and is, therefore,
more efficient than the non-baselining method.

When attempts were made to reduce the number of termsin the regression model
while retaining nearly the same value of R as the full model, non-baselined data show greater
vulnerability. For example, using an average of 4.6 termsin the reduced models, the non-
baselined R valueis 0.71 while the baselined R value is 0.74. These results suggest that the
baselining method provides small improvementsin the modelsand is, therefore, an
advantageous procedure. Accordingly, emphasis was placed on baselined regression in the
subseguent analyses.

It was found that the two variables associated with the letter task (RTLTCOR and
SUMLTERR) are more easily predicted than those associated with the math task
(RTMTHCOR and SUMTHERR). Reasons for this difference are unclear, however, the
letter task was considered to be much easier than the math task. Therefore, errors may have
been made in the math task that were not drowsinessrelated. If so, drowsiness related
independent variables would not have been able to predict performance as accurately.

When an attempt was made to predict the GLOBAL measure of performance, the
prediction becomes better (R = 0.85). Thisis believed to be an excellent fit, considering the
variability of the data. The table shows that a measure of eye closure, two measures of EEG
and two measures of heart rate are sufficient to provide agood predictor of overall task

performance.
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Table 7:  Summary of Regression Analyses (From Ellsworth, Wreggit, and Wierwille, 1993)
Note: All table numbersin Table 7 refer to Ellsworth, Wreggit, and Wierwille, 1993

Measure RTLTCOR RTMTHCOR SUMLTERR SUMTHERR GLOBAL AVERAGES
Non- Al Significant 0.85 (9) 0.77 (9) 0.82 (7) 0.58 (6) 0.84 (8) 0.77 (7.8)
Baselined Measures Tahle 31 Table 32 Table 33 Table 34 Table 35
(a=0.01)
Reduced Set 0.79 (4) 0.66 (4) 0.78 (5) 0.56 (5) 0.76 (5) 0.71 (4.6)
Of Measures Table 36 Tahles 374 | Table 38 Table 39 Table 40
All Significant 0.87 (6) 0.75 (4) 0.83(6) 0.54 (3) 0.86 (6) 0.77(5.0)
Baselined Measures Table 42 Table 43 Table 44 Table 45 Table 46
(cl=0.01)
Reduced Set 084 (5) 0.71 (4) 0.81 (5) 0.51 (4) 0.85 (5) 0.74 (4.6)
Of Measures Table 47 Table 48 Table 49 Table SO Table 51
RTLTCOR: The average response time to a correct letter response over a one-minute interval. In situations where subjects gave an incorrect response
or did not respond, a value of 10 seconds was inputted for the response time. This value is the minimum amount of time in which a subject
could have responded correctly.

. RTMTHCOR: The average response time to a correct math response over aone-minute interval. In situations where subjects gave an incorrect response or
did not respond, a value of 10 seconds was inputted for the response time. This value is the minimum amount of time in which a subject
could have responded correctly.

¢ SUMLTERR: The total number of letter task errors over a one-minute interval (the number of wrong letter responses and the number of no letter
responses).

. SUMTHERR: The total number of math task errors over a one-minute interval (the number of wrong math responses and the number of no math
responses).

. GLOBAL: Sum of SUMTHERR, RTMTHCOR, SUMLTERR, and RTLTCOR (data were non-baselined).
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DISCUSSION

The objective of this research has been to provide a“definition” of drowsiness, using
candidate measures that the research literature suggests should be sensitive indicators of
drowsiness. The regression analyses performed in this study represent an attempt to relate
these candidate drowsiness indicators to measurable task performance indicators. Thus, the
independent measures and the ways these measures are combined in the regression analyses
areinfact candidate “ definitions’ of drowsiness.

Four measures of performance were studied, both individually and in combination
(GLOBAL measure). Final results appear in Ellsworth, Wreggit, and Wierwille (1993).
These results show that with as many as five and as few as two independent variables, itis
possible to achieve arelatively large R value. The independent variablesare not  difficult to
obtain, and are limited to eye closure, smple EEG and simple heart rate measures. Thus, all

measures can be obtained without overly encumbering subjects with electrodes.
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Chapter Four
Development of Driver-Drowsiness Detection Algorithms
(This chapter represents an extended summary of work reported in the Fourth
Semiannua Research Report, dated October 15, 1993 and referred to as
Wreggit, Kirn, and Wierwille, 1993)
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INTRODUCTION

This study focused on two tasks, including: 1) determining the best statistical
procedure for drowsi ness-detection algorithm development and 2) devel oping awide variety
of usable algorithms for detection of driver drowsiness.

The dependent measuresin this study were definitional measures of drowsiness that
were not considered to be operationally obtainable in an actual vehicle. These measures
included two eyelid-closure measures, the average observer rating measure (devel oped by
Wierwille and Ellsworth, 1992 -- Chapter Two), an operational definition of drowsiness
developed by Ellsworth, Wreggit, and Wierwille, 1993 -- Chapter Three), and a measure that
was comprised of the standardized sum of the above dependent measures.

The independent measuresin this study were operational measures that would be
obtainable in an on-the-road vehicle. The independent measures collected during this study
included driving-related measures, driver-related measures (determined by Ellsworth,
Wreggit, and Wierwille, 1993), and secondary task performance measures. Thevarious
measures were used to create algorithms for the detection of drowsiness while driving.

Multiple regression and discriminant analyses were performed on the collected datato
determine the best predictors of drowsiness. A pictorial representation of the multiple
regression/discriminant analysis objective is given in Figure 9. The results from the two
statistical procedureswere compared for classification accuracy.

It should be noted here that in regression and discriminant analysis the definitions of
independent/dependent variables are different than the definitions of independent/dependent
variablesin traditional experimental design. In traditional experimental design the variable
being manipulated by an experimenter is the independent variable and the dependent variable
isthe measure affected by the independent variable. However, in regression and similar
statistical techniques, the term independent variable refersto predictor variables and the term

dependent variable refersto the variable that is being predicted.
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(INDEPENDENT MEASURES)

Seat-Related \ Measures Contained
. In Definition

Steering-Refated (DEPENDENT MEASURES)
L ateral Accelerometer-Rel ated
Lane-Related AVEOBS
AngularAccelerometer-Related EYEMEAS
Dislay Y a-Releted NEWDEF

I aw-Relat

Py MASTER
A/O Task Related PERCLOS

\Heart—ReIated P

A

Prediction

NEWDEF score is from Ellsworth et a. (1993)

Figure9: MultipleRegression/Discriminant Analysis Objective.
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Multiple regression analyses were initially undertaken to determine optimum
combinations of independent measures that would best predict levels of drowsiness.
Discriminant analyses employed the same sets .of independent variables that were devel oped
through the use of multiple regression. Classification matrices were then constructed for both
multiple regression output and discriminant analysis output. The results showed that
multiple regression was as accurate as discriminant analysisin classifying levels of
drowsiness. Since multiple regression analysis does have some inherent advantages over
discriminant analysis when dealing with detection algorithm development and use, it was
decided that all algorithms would be developed using multiple regression techniques.

After determining that multiple regression analysis was best suited for the
devel opment of driver-drowsiness detection algorithms, further examination and analysis of
the algorithms could be undertaken. Numerous a gorithms were devel oped using various
classes of measures. The classes of measures included lane-related, steering-related, lateral
accelerometer-related, and secondary task-related measures, among others. By employing
different combinations of measures, a step-up, step-down procedure could be achieved.
Some detection algorithms employ steering and lateral accelerometer measures and other sets
of detection algorithms employ steering, lateral accelerometer, and lane-related measures, for
example. Therefore, loss of alane-related measure does not cause failure of the detection
system. Rather, the system simply “steps-down” to amodel that does not contain lane-
related measures.

Multiple algorithms containing various combinations of classes were obtained in
order to 1) alow the use of a*“ step-up, step-down” procedure and 2) allow the use of different

operational definitions of drowsiness.
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METHOD
Subjects

Twelve volunteer subjects (six male and six female) were used in this study. All
subjectslived in the Blacksburg, Virginiaarea. Aspart of ascreening procedure all
potential subjects were asked various questions over the phone concerning their driving
habits, sleeping habits, and other relevant questions. Subjects who had atypical sleeping
patterns, sleeping disorders, or were not prone to drowsiness were not used in the study.
Potential subjects who smoked more than three cigarettes per day were not employed as
subjects. This decision was made because subjects would not be alowed to smoke from
approximately 7 P. M. to 3 A. M. It wasfelt that if heavy smokers either smoked during
those hours or not did not smoke during those hours the subjects’ arousal level may have
been affected.

Subjects’ ages ranged from 18 to 40 years. This age range was chosen because most
accidents due to drowsiness that occur at night involve drivers of this age group. All subjects
were given a Landholt C vision exam and had to demonstrate that they had corrected vision
of at least 20/30. All subjectswererequiredto haveavalid driver’slicense.

During the data collection one subject drove the automobile simulator in an
unrealistic and inconsistent manner. In particular, this subject consistently drove on the
shoulder for extended periods of time. Another subject seemed highly stimulated and
exhibited no signs of drowsiness. It was suspected by the experimenters that the latter
subject either napped during the day or surreptitiously ingested a stimulant before the data
gathering run took place. These subjects were run through the entire experiment and paid for
their time. However, the data collected from these two subjects were not used. Two other
volunteer subjects were used as replacements.

Apparatus
A pictorial representation of the peripheral equipment used for algorithm

development is seen in Figure 10.
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Simulator. The simulator used in the study was an automobile simulator that handles
like amidsize vehicle. The smulator had been validated by Leonard and Wierwille (1975)
with regard to driver-vehicle performance measures by comparing it with an actual
automobile. It had also been validated in regard to visua glance times for in-vehicle tasks
(Kurokawa and Wierwille, 1990).

The simulator was computer controlled and had a hydraulically powered moving-base
with four degrees of freedom. The physical motions included pitch, yaw, lateral movement,

.and longitudinal movement. The moving base was also capable of mimicking roadway
vibration. Time delays inherent in the motion platform over and above normal vehicle delays
were estimated to be 25 milliseconds (Dingus, Hardee, and Wierwille, 1985) and were
compensated for in the vehicle dynamics.

The roadway imaging system of the simulator provided an image of atwo-lane
roadway with a center strip and side markings. Additionally, horizontal lines were displayed
to give the driver afeeling of looking at a roadway that was embedded in the horizontal
plane. This was important to further the impression that the simulated roadway continued
into the distance. A monochrome CRT was used to present the roadway image to the driver.
The CRT was viewed through a Fresnel lens. When the driver’s eyes were focused on the
simulated roadway a majority of their peripheral vision was used to view the screen. Also
present in the subject’ s view was a simulated automobile hood that appeared at the correct
distance and was of the correct size.

An audio system was included in the design of the automobile simulator to provide
additional realism. Simulated sounds included tire noise, engine/drive train noise, tire
screech on severe braking, and tire squeal on severe cornering (Dingus, Hardee, and
Wierwille, 1985).

Video recording equipment. A low light level camera (RCA TC1004-UOI) was used

to continuously monitor a subject’ s entire face, including eye movements. Since the camera

76



could operate at very low light levels, it was unobtrusive. The video signal was passed through a VCR and
was then viewed by an experimenter on a Sanyo VM 45 12A monitor.

After al subjects completed the study the research team viewed the recorded imagesf the subjects
so that further analyses could be performed.

Linear potentiometer. An experimenter manually tracked the subject’ s eyes by means of alinear

potentiometer. As the subject’ s eyes closed, the potentiometer was pushed down so asto track the movement
of the eydids. If the subject’ s eyes were 100% closed the potentiometer was moved to the bottom of its range.
If the subject’ s eyes were 0% closed the potentiometer was moved to the top.

Steering wheel controls for subsidiary task.The smulator steering wheel had been altered so that it

included two push buttons on the cross member (thick spokes). One button was located on the left and the
other on the right. The right button was labeled “ YES’ and the |eft button was |abeled “ NO” . The subjects
responded to subsidiary task stimuli presented to them by pressing either the“ YES’ or “ NO” button. The
responses were interfaced to a microcomputer for storage and analyses. This microcomputer was dedicated to
subsidiary-task response scoring and timing.

Win 486-33i microcomputer and analog-digital interface card. A majority of the data

gathering for this experiment was performed by another microcomputer (Win 486-33i) and interface card.
The interface card used was a National Instruments AT-MI0O-16 card. This alowed for the collection of
analog data which was converted to digital format for compatibility with a microcomputer.

Y et another computer/processor was used to collect data for several physiological measures including
heart rate, eye closure, and EEG. The EEG measures included alpha, beta, and theta waves. The signals that
were received by the processor included signals generated from two electrodes placed over the occipital lobe
(EEG measures), an earplethysmograph (heart rate), alinear potentiometer (eye closure), and various signals

from the automobilesimulator. Output from the processor was then routed to the WIN 486-33i
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microcomputer, which was programmed in - QuickBASIC to collect and store the appropriate data as
well asto perform on-line calculations.

The on-line calculations that were performed by the WIN microcomputer on the collected data
took place over each one-minute segment. These calculations resulted in the proportion of the time that
asubject’ s eyes were closed 80% or more (PERCLOS), the mean-square of the eyelid closure signal
(EYEMEAS), mean aphaamplitude (MNALPHA), mean beta amplitude (MNBETA), mean theta
amplitude (MNTHETA), mean heart rate (MNHRT), and squared mean heart rate (MNSQHRT),
among others.

Electrodes and plethysmograph. Biopotential skin electrodes were placed over the occipita

lobe and the lead wires were secured behind the driver/subject so that they could not be seen by the
subject. An athletic headband was placed around the subject’ s head so that the electrodes were held-
securely to the subject’ s head. As mentioned above, the EEG signals passed through a GRASS high
performance preamplifier and then to the processor. Once the signals passed through the processor they
were sampled by the AT-MI0O-16 analog to digital card. After this stage the signal was ready for
measures computation.

The plethysmograph sensor was placed on the antihelix of the subject’ s ear for collection of
heart rate data. The plethysmograph’ slead wire was secured behind the subject so that it was
unobtrusive. To keep the sensor and lead wire in place the same athletic headband that was used for the
electrodes was used to hold them to the subject’ s head. The signal obtained fromthe  plethysmograph
passed through a Hewlett-Packard 7807C heart rate monitor. The signal then passed through the signal
processor and on to the AT-MIO-16 card before reaching the microcomputer.

Experimental Design

The experimental design involved aregression-  discriminant analysis approach to data analysis.
Of the twelve subjects employed in the study, four were asked to simply drive the smulator, four
subjects carried out a secondary task every fifteen seconds while driving, and four subjects interacted

with the dashboard controls approximately every eight to ten minutes
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while driving. In each group there were two randomly assigned females and two randomly
assigned males.

Several categories of measures were gathered during the study. Within each category
were various measures. Below isalist of the 33 collected measures grouped within the

appropriate category. (Each measure was initially calculated over each one-minute interval.)

Seat movement-rel ated measures:

. NMRMOVS:. The number of times the seatback sensor signals exceeded the threshold value
(corresponding to the number of timesthe driver went from a static position to
amoving position in the seat.)

« THRESMVS: The proportion of total time that the seat sensor signal's exceeded the threshold
value (corresponding to the proportion of total time that the driver was moving

in the seat.)

Steering-related measures:

« NMRHOLD: The number of timesthe hold circuit output on the steering wheel exceeded a
threshold value (corresponding to holding the steering wheel still for 0.4
second or longer). (Each time the steering wheel was held still for 0.4 second
or longer, the count was increased by one.)

« THRSHLD: The proportion of total time that the hold circuit on the steering wheel
exceeded a threshold value. (This proportion would begin to increase after 0.4

second of hold and would continue until the steering wheel was moved.)

« STVELV: The variance of steering velocity, where velocity was measured in degrees per
second.
« LGREV: The number of times that steering excursions exceeded 15 degrees after

steering velocity passed through zero.
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« MDREV:

. SMREV:

. STEXED:

The number of times that steering excursions exceeded 5 degrees (but less than
15 degrees) after steering velocity passed through zero.

The number of times that steering excursions exceeded 1 degree (but less than
5 degrees) after steering velocity passed through zero.

The proportion of time that steering velocity exceeded 125 degrees per second.

Lane-related measures:

. LANDEV:

. LANVAR:
. LNMNSQ

« LNRTDEV:

« LNRTVAR:

. LANEX:

. LNERRSQ:

The standard deviation of lateral position relative to the lane, where lane
position was measured in feet.

The variance of the |ateral position relative to the lane (square of LANDEV).
The mean square of lane position in feet. (The “zero” position was defined as
that position occurring when the vehicle was centered in the lane.)

The standard deviation of the time derivative of lane position (relative to the
lane) in feet per second.

The variance of the time derivative of lane position (square of LNRTDEV).
The proportion of time that any part of the vehicle exceeded either lane
boundary.

The mean square of the horizontal difference (in feet) between the outside edge
of the vehicle and the lane edge when the vehicle exceeded the lane. When the

vehicle did not exceed the lane, the contribution to the measure was zero.

Accelerometer-related measures:

. ACCDEV:

The standard deviation of the smoothed output of asimulated lateral
accelerometer, where the output was first converted to feet per second-squared.
(Smoothing was accomplished with a single-pole low-passfilter having a

comer frequency at 7.25 Hz.)
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. ACCVAR:  Thevariance of the smoothed output of the accelerometer. (square of
ACCDEV)

« INTACDEV: The standard deviation of the lateral velocity of the vehicle. (This signal was
obtained by passing the smoothed accel erometer signal through an additional
single-pole low-pass filter (Ieaking integrator) with a comer frequency of 0.004
Hz. The unit of output was volts, in which one unit (volt) correspondsto a
smoothed |ateral velocity of 73.34 feet per second.)

« INTACVAR: Thevariance of the lateral velocity of the vehicle (square of INTACDEYV).

« ACEXEED: The proportion of time that the magnitude of lateral acceleration exceeded a
threshold of 0.3 g (9.66 ft/second2).

Heading-related measures:

. HPHDGDEV:  The standard deviation of the high-pass heading signal, in degrees. (The
heading signal was passed through a single-pole high-passfilter with a
comer frequency of 0.0 16Hz.)

« HPHDGVAR:  Thevariance of the high-pass heading signa (square of HPHDGDEYV).

« DSYAWDEV: The standard deviation of the display yaw signal in degrees. (This signal
was the angular difference between vehicle heading and instantaneous
roadway tangent.)

« DSYAWVAR: Thevariance of the display yaw signal (square of DSYAWDEV).

Subsidiary (A/O) task-related measures: (Obtained from four of the driver subjects.)

. AOTIME: Mean response time to a correct response. Incorrect responses and no-
responses were specified as 12 seconds.

« NMWRONG: Mean number of incorrect responses. (Those instances in which there was no
response were not included in this measure.)

« NUMNR: Mean number of stimuli for which there was no response.
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Brain wave activity:
MNALPHA: Mean alpha amplitude. (The detected amplitude of the output of a bandpass

filter of the EEG having a passband from 8 to 12 Hz. Thefilter had asingle
complex pole pair with z = 0.1 and wn = 61.6 rad. per second.)

MNBETA: Mean beta amplitude. (The detected amplitude of the output of a bandpass

filter of the EEG having a passband from 12 to 24 Hz. Thefilter had asingle
complex pole pair with z = 0.1 and wn = 109 rad. per second.)

MNTHETA: Mean theta amplitude. (The detected amplitude of the output of a bandpass

filter of the EEG having a passband from 4 to 8 Hz. Thefilter had asingle
complex pole pair with z = 0.1 and wn = 35.8 rad. per second.)

Heart rate measures:
MNHRT: Mean heart rate. (The mean of the instantaneous output of the heart rate

monitor in pulses per minute.)
MNSQHRT: Mean-square heart rate. (The mean square of the instantaneous output of the

heart rate monitor in pulses per minute.)

The data that were collected during this study were used to compute several definitional

measures of drowsiness. The drowsiness measures were;

EYEMEAS: The mean square of the percentage of the subject’ s eye closure. (Eyes wide
open represented zero percent and eyes closed represented 100 percent.)

PERCLOS: The proportion of the time that a subject’ s eyes were closed 80% or more.
(Again, eyes wide open represented zero percent and eyes closed represented
100 percent.)

AVEOBS: The average drowsiness rating of three observers for each one-minute interval.

(Scale extremes were zero for “ not drowsy” and 100 for * extremely drowsy” .
This measure was obtained after the experimental runs by viewing the
videotapes of the subjects faces. A rating was obtained for each minute.)
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. NEWDEF: Definition developed by Ellsworth, Wreggit, and Wierwille (1993):
NEWDEF = 18.45722(PERCLOS) - 0.01569(MNALPHA) +
0.020173(MNTHETA) - 0.00549(MNBETA) + 0.000698(MNSQHRT).
(Seepage66.)

. MASTER:  The sum of the standardized values of AVEOBS, EYEMEAS, NEWDEF,
AND PERCLOS. (Standardization was performed after data gathering and
included al 6-minute average values of the given measure (eg., PERCLOS)
fromall subjects.

Pracedure

Subject procedure. All subjects were involved in two sessions. The first was a
screening process that took place over the telephone. During the screening session all
potential subjects were asked questionsin regard to driving habits, smoking habits, work
schedules, and health.

Subjects that passed the screening and were chosen for the study were told to carry
out their normal activities during the day on which the study was scheduled. It was
mandatory that all subjects awoke at approximately 7:00 A.M. Individuals who slept during
the day were not allowed to participate. At 6:00 P.M. a member of the experimenter team
met the subject at the subject’ s residence. The experimenter took the subject to dinner at a
fast-food restaurant. Subjects were not allowed to intake sugar, caffeine, alcohol or any other
stimulant or depressant after 6:00 P.M. Subjects were alowed to smoke during or
immediately following dinner. By coincidence, no smokers participated in the study. After
eating dinner, subjects were driven to the Vehicle Analysis and Simulation Lab.

The subject was given a Landholt C vision exam upon arrival at the laboratory. Each
subject was required to demonstrate corrected vision of a least 20/30. Once a subject passed
the vision test he or she was given an instruction sheet that gave further details concerning
the experiment. After reading the instructions the subject was asked if there were any

questions concerning the study. Once questions were answered by the experimenter the
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subject was asked to sign an informed consent form. While subjects waited for the study to
begin they were allowed to watch television, read, study, etc. An experimenter stayed with
the subject at all times except restroom breaks.

The experiment was run from approximately midnight to 3:00 A.M. At midnight,
two rested experimenters arrived to relieve the first member of the team. At that time the
subject was again asked if there were any questions concerning the study. After any
questions were answered, an experimenter placed the subject in the simulator and the
laboratory lights were dimmed. The subject practiced driving the simulator for
approximately five minutes. Once the five-minute practice session was complete the
laboratory lights were turned on and the subject was allowed to get out of the simulator for a
short time before beginning the experiment. This procedure was used to acclimatize the
subject to the simulator.

The subjectsin the group that were to interact with’ the dashboard controls were
shown the various controls and displays that they would haveto use. Several practice
commands were given to the subjects to familiarize them with the controls. The subjects that
were in the auditory-search task group were given severa practice commands as well. Any
questions that the subjects had at this time were answered by the experimenter.

The experimenters began applying physiological monitoring equipment to the subject
at approximately 12:15 A.M. Various equipment was turned on and the laboratory lights
were dimmed. Thereafter the subject was told to begin driving the simulator and accelerate
to 60 miles per hour. At the beginning of the driving session several more practice tasks
were given to the subjects who were to manipulate the dash board controls or perform the
secondary task. Several minutes after the subject began to drive and the experimenters felt
that the driver was maintaining 60 m.p.h. in a consistent manner, data collection was
initiated. The driving session in which data were collected lasted 2 1/2 hours.

After completion of the study the physiological monitoring equipment was

removed from the subject by an experimenter. The subject was assisted out of the
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simulator, paid for time spent, and debriefed. The subject was then driven home by one of
the experimenters.

Experimental task. The subject drove the simulated automobile asif it were an
actual car. The subject attempted to stay within the side markings of the simulated
roadway and in the appropriate lane. However, since this was a simulated roadway and
vehicle, the driver was not harmed if the “vehicle” left the roadway or went into the wrong
lane.

Four of the twelve subjects were asked to perform a secondary task. This task
involved an auditory presentation of variouswords. If the presented word contained an
“A” or“O the subject was to press the button labeled “ YES® |ocated on the steering
wheel. [If the presented word did not include an “A” or “O’ the subject wasto pressthe
button labeled “ NO” located on the steering wheel. A new word was presented verbally
every 15 seconds by means of an audio track on a pre-recorded videotape. The |etters“ A"
and “O’ were chosen as target | etters because words could be found that include the letters
“A” and“O and are easily distinguishable from other words.

Four of the twelve subjects were asked to manipulate various controls on the dash
board. These tasks involved following auditory commands to adjust radio controls, push
buttons, and operate vertical slide controls. One auditory command was given
approximately every eight to ten minutes. This dash board manipulation task was used
simply to distract the driver from the driving task as would happen in an actual on-the-.
road setting. This was important because the data would then include small amounts of
“noise” that would actually be seen in an automobile. The commands were fairly
infrequent so that the task of manipulating the controls by the subject would not create too
much of an arousal effect. Also, the frequency of control manipulation would be similar

to aperson’ s activity while driving on the road.

85



Data Analysis Overview

All measures were first computed over one-minute intervals. Data manipulation
procedures were then undertaken to prepare datafor statistical analyses . Initialy, the first
two minutes from dl measures was deleted. This was done so that the data to be analyzed
did not include the time when subjects were suspected of “settling in” to the driving task.
Even though al subjects were given a practice driving session it was thought that in the first
two minutes of driving some subjects demonstrated inconsistencies concerning their driving
‘behavior, reactions, and physiological measures.

All independent measures were baselined using the average of the first ten minutes
(after the actua first two minutes had been deleted) of data. The average of the first ten
minutes of data was then subtracted from every subsequent data point within that measure.
Each data point consisted of a one-minute average of data. Aftercompletion of the
baselining procedure the data were averaged across six-minute intervals. The first two
intervals were five-minute averages to compensate for the earlier deletion of thefirst two
minutes of data. Six-minute averages had been shown previously to have higher correlation
values than either one-minute, two-minute, or four-minute averages (Ellsworth, Wreggit, and
Wierwille, 1993). See Figure 11 for apictorial overview of the data manipulation procedure.
After data manipulation, multiple regression and discriminant analyses were performed on
the collected data to determine the best predictors of drowsiness (as previously defined).

The difference between multiple regression and discriminant analysis can be seenin
the methods used to choose the coefficients. In multiple regression the coefficients are
selected to minimize the sum of the squared differences between a person’s predicted and
actual criterion score. In discriminant analysis the coefficients are selected to maximize
correct classification. Also, the criterion variable for discriminant analysis is discrete rather
than continuous as with multiple regression. The main purpose of the multiple regression

and discriminant analyses was to find optimized combinations of variables that would best
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2 minutes; The first 2 minutes are deleted from all data

5 minutes: 5 minute average calculated

5 minutes: 5 minute average calcul ated

The first 10 minutes of
data used for baselining*

6 minutes. 6 minute average calculated

6 minutes. 6 minute average calculated

6 minutes. 6 minute average calculated

6 minutes. 6 minute average calculated

6-minute averages continued until the entire set of one-
minute segments (150 minutes) was manipulated. 148 total
minutes were used due to the deletion of the first two
minutes of data. Therefore, 25 data points were created
including two data points of 5-minute averages and twenty-

three data points of 6-minute averages.

* Basdlining is aprocedure in which the initial ten minutes of data are averaged and then

subtracted from all subsequent one-minute segments. Baselining was carried out so that

data relative to the subject’ sinitial data values could be obtained.

Figure 11: Pre-Analysis Data Manipulation Procedures.
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predict “drowsiness’ during driving sessions.

Multiple regression analyses were initially used for several reasons. First, it was
possible to track any portion of the data using multiple regression. Another important
consideration was the fact that the threshold value could be changed to any level after
application in the future. In other words, it would be possible to change the “ sensitivity” of
an onboard detection system if algorithms devel oped through the use of multiple regression
were employed. Also, by using multiple regression, the experimenters were able to gain
valuable insight into which measures contributed consistently to the prediction of drowsiness.
For example, it was found that seat movement measures (NMRMOV S and THRESMV S) did
not significantly contribute to the prediction of drowsiness and therefore they were dropped
from further analyses. Finally, multiple regression was al so used to determine which
measures would be used in the discriminant analyses.

Multiple regression was performed on all twelve subjects and separately on the four
subjects involved with the A/O auditory task. A block diagram of the algorithm development
procedure is shown in Figure 12. When performing the multiple regression analyses the B
weights of the various measures were first examined. This allowed for the removal of
measures that were linearly related. Measures that contained large, offsetting coefficients
were eliminated one at atime. (The equa and opposite coefficients demonstrated that the
measures contained approximately the same predictive information. Therefore one had to be
removed from the analysis.) Once any large, offsetting coefficients had been taken care of,
the elimination of nonsignificant measures (p > 0.05) began, starting with the measure having
the smallest F-ratio. Once the set of measures was reduced to four or five measures
(sometimes more or less), substitution of various measures back into the set began. From this
backward stepwise approach to multiple regression the best set of results were found.

Once the best multiple regression results were found for each dependent variable,

MNHRT and MNSQHRT were added to the final set of independent measures. The purpose
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Figure 12: Block Diagram of the Main Steps in the Algorithm Development Procedure
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of this procedure was to examine whether heart rate would increase the accuracy of
drowsiness prediction. After adding the two heart rate variables it was found that some of the
significant measures found previously would become nonsignificant due to the inclusion of
the heart rate variables.

The measures that were used in the discriminant analyses were based on the measures
found to have the most predictive power in the multiple regression analyses. By using the
measures found to be significant predictors of drowsinessin multiple regression it was felt
that the discriminant analyses would begin with a strong foundation of measures. Since
multiple regression attempts to fit predicted and observed data as closely as possible, it was
hypothesized that these variables would contain integrity in asimilar setting (other subjects
carrying out similar activities). In using the measures found to be significant in multiple
regression an attempt was made to bolster the future accuracy of the algorithms devel oped
with discriminant analyses.

The discriminant analyses that were carried out examined the predictability of two
distinct categories of wakefulness (awake and drowsy) and three distinct categories of
wakefulness (awake, questionable, and drowsy). As seen in Figure 13 the dependent
(definitional) variable PERCL OS has been graphed for each subject with threshold lines
drawn in. In this graphs, the first 25 points on the abscissa correspond to subject 1, the next
25 points correspond to subject 2, and so on. The upper and lower threshold levels that were
chosen for the three category discriminant analyses were based upon visual examination of
the five dependent variables in conjunction with the known driving performance of each
subject. For example, the experimenters rated subjects 5,7,9and 10 as“aert” or
“ moderately alert” and these subjects performed adequately while driving. Therefore, the
criterion line between “awake” and “questionable” was drawn so as to avoid the inclusion of
agreat majority of these subjects' data. The spikesin the dependent variable data that extend
into the “drowsy” category of the graphs correspond with poor driving performance.

Therefore, the criterion line between “questionable” and “drowsy” was drawn to include the
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Figure 13: PERCLOS Data With Upper and Lower Criterion Lines for Three Categories and

Single Criterion Line for Two Categories.
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spikes in the data that corresponded with poor driving performance. The placement of the
criterion line for the two category discriminant analyses was calculated by taking the average
of the upper and lower thresholds of the three category analyses. In other words, the
threshold is at the center of the “ questionable” band.

Various drowsiness-detection algorithms were devel oped for possible implementation
in an on-board detection system. Each set of algorithms used a dlightly different set of
measures so that 1oss of any measure does not mean failure of the detection system. The
concept of using several agorithms for the detection of drowsiness employs a*“ step-up” and
“step-down” approach. For example, if al signals are valid, the best available agorithm for
drowsiness detection would be used. However, if one of the sensors necessary for the best
agorithm is not providing avalid signal, the next best algorithm that does not require the
invalid signal would be used. This procedure uses the “step-down” approach. A “step-up”
procedure involves the use of newly validated signals. Table 8 shows the different sets of
measures that were used in the multiple regression analyses and the discriminant analyses
that make it possible to use the “ step-up” and “step-down” process. (In the table,

“accelerometer” refersto lateral accelerometer.)
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Table 8: Sets of Measures Used in Multiple Regression and Discriminant Analyses for Each

Dependent Measure.

I ndependent Measures

Dependent M easures

AVEOBS

EYEMEAS

NEWDEF

PERCLOS

MASTER

Steering and Accelerometer

Steering, Accelerometer, & HPHDGDEV/VAR

Steering, Accelerometer, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ

Steering, Accelerometer, & all lane measures
(includes LNRTDEV/VAR)

Steering, Accelerometer. all lane measures, &
DSYAWDEV/VAR

A/O Task Measures Only

A/O Task, Steering, & Accelerometer

A/O Task, Steering, Accelerometer, &
HPHDGDEV/VAR

A/O Task, LANDEV/VAR, LNMNSQ, LANEX &
LNERRSQ '

A/O Task. Steering, Accelerometer, LANDEV/VAR.
LNMNSQ, LANEX & LNERRSQ

Heart, Steering, & Accelerometer

‘ Heart, Steering, Accelerometer, & HPHDGDEV/VAR

Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ. LANEX, & LNERRSQ

Heart. Steering. Accelerometer. & all lane measures
(includes LNRTDEV/VAR)

Heart. Steering. Accelerometer, all lane measures. &
DSYAWDEV/VAR

A/Q Task and Heart

A/O Task, Heart. Steering, & Accelerometer

A/O Task. Heart, Steering, Accelerometer. &
HPHDGDEV/VAR

AJO Task. Heart. LANDEV/VAR, LNMNSQ.
LANEX. & LNERRSQ

A/O, Heart. Steering, Accelerometer. LANDEV/VAR.

LNMNSQ, LANEX, & LNERRSQ
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RESULTS

Two groups of data were analyzed. As explained earlier, the two groups included the

A/O auditory-task group that consisted of four subjects, and a group including all subjects. It

was found through the use of multiple regression and discriminant analyses that the use of
only four subjects resulted in higher R values and lower Wilk's Lambda scores than when

using data from twelve subjects. These results occur because an increase in the number of

subjects causes greater difficulty in fitting predicted and observed data. It must be noted here

that this was expected and must be kept in mind when reviewing the results of this study.
ltinl :

Table 9 isasummary of resultsthat were attained from the multiple regression
analyses. Multiple regression tables and classification matrices associated with the bolded
cellsin Table 9 are presented in Appendix A. The agorithmsin Appendix A were chosen
because they represent typical algorithms that may be employed in a full-scale on-the-road
study. See Wreggit, Kim, and Wierwille (1993) for a complete set of results.

An examination of the average R scores across all sets of independent variables for
each of the five dependent variables gives a good idea of the relative predictive strengths of
the dependent variables. The results of the average R-score analysis seen below were
obtained by averaging the R values contained within each column of Table 9.

1. MASTER:  Average R = 0.8775 across 11 sets.
2. PERCLOS: Average R = 0.8563 across 12 sets
3. AVEOBS:  Average R =0.8303 across 16 sets
4. EYEMEAS. Average R = 0.8154 across 9 sets
5.NEWDEF:. Average R = 0.7523 across 16 sets
The number of sets used to calculate each average was determined by the number of

independent variable sets used to independently predict each dependent variable.
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Table 9: Summary Table of Multiple Regression Analyses Results Showing R Values.

Independent Measures Dependent Measures
AVEOBS EYEMEAS NEWDEF PERCLOS MASTER
D | Steering and Accelerometer
0.747 0.764 0.677 0.789 0.801
E Steering, Accelerometer, & HPHDGDEV/VAR
0.793 0.809 0.700 0.847 0.852
F Steering, Accelerometer, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ 0.826 0.837 0.731 0.872 0.886
G | Steering, Accelerometer, & al lane measures * A A
(includes LNRTDEV/VAR) 0.824 0.757 0.872
H | Steering, Accelerometer, al lane measures, & * A A
DSYAWDEV/VAR 0.826 0.836 0.751
| A/O Task Measures Only
0.761 0.768 0.660 0.810 0.822
J A/O Task, Steering, & Accelerometer Accel. Accel.
0.824 0.824 0.740 0.836 0.876
K | A/O Task, Steering, Accelerometer, & Steering A Accel.
HPHDGDEV/VAR. 0.917 0.855 0.868 0.903
L A/O Task, LANDEV/VAR, LNMNSQ, LANEX, & D
LNERRSQ 0.874 0.768 0.875 0.903
M A/O Task, Steering, Accelerometer, LANDEV/VAR, D D
LNMNSQ, LANEX, & LNERRSQ 0.922 0.902 0.936
N | Heart, Steering, & Accelerometer O O
0.785 0.772 0.711
O | Heart, Steering, Accelerometer, & HPHDGDEV/VAR O
0.813 0.761 0.851 0.854
P | Heart, Steering, Accelerometer, LANDEV/VAR, O O
LNMNSQ, LANEX, & LNERRSQ 0.838 0.774 0.874
Q | Heart, Steering, Accelerometer, & all lane measures * O O O
(includes LNRTDEV/VAR) 0.816 0.802
R | Heart, Steering, Accelerometer, all lane measures, & Lane O steer/LnRT A O
DSYAWDEV/VAR Rate 0.797
0.837
S A/O Task and Heart O O 0.774 O O
T | A/O Task, Heart, Steering, & Accelerometer Accel. O Accel. O O
0.837 0.810
U | A/O Task, Heart, Steering, Accelerometer, & O A Accel.
HPHDGDEV/VAR 0.918 0.880 0.909
V | A/O Task, Heart, LANDEV/VAR, LNMNSQ, d d d
LANEX, & LNERRSQ 0.823 0.910
AJO, Heart, Steering, Accelerometer, LANDEV/VAR, O D D O O
LNMNSQ, LANEX, & LNERRSQ

KEY:

A Inregression analyses introduction of variable did not improve R value. See entry directly above .for
model with same R and fewer terms.

(J Heart Measures did not improve regression as compared with non-heart equivalent. See corresponding
non-heart entry for model with same R value and fewer terms.

D A/O task measures did not improve regression as compared with non-A/O task measure equivalent. See
corresponding non-A/O task measure entry for model with same R value and fewer terms.
* A cell designated with an asterisk could have been given the A symbol. However, the asterisk denotes a
substantially changed algorithm in term of measures used.
NOTES. - Any measure specified in acell was deleted because of nonsignificance.
- Letter in left-hand column corresponds to appendix (Wreggit, Kim, and Wierwille, 1993) in
which analysisis presented.
- Multiple regression tables and classification matrices associated with bolded cells can be seen
in Appendix A of thisreport.
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The multiple regression procedure was carried out in several steps. Mean heart rate
and mean square heart rate measures were added to the best multiple regression setsto
determine whether the heart rate variables contributed to the prediction of drowsiness. A
general increase in R scores was seen with the addition of heart rate measures.

The addition of A/O task measuresincreased R values in comparison with results
from data that did not incorporate the A/O task. However it must be remembered that the
A/O task measures were collected using four subjects, thus somewhat inflating the R value
relative to the results seen when analyzing data from twelve subjects.

After completing some initial multiple regression analyses it was found that seat
movement measures did not contribute to the prediction of drowsiness. The seat movement
measures, NMRMOV S and THRESMV' S, were then eliminated from further analyses.

Multiple regression analyses demonstrated that it was possible to track any portion of
data. Ascan be seen in Figure 14, predicted data tracks the observed PERCL OS data quite
accurately. The graphed tracking example resulting from multiple regression analysis has an
R value of 0.872 as seen in the third row of Table 9. The regressors used for the analysesin
row three include steering measures, accelerometer measures, LANDEVNAR, LNMNSQ,
LANEX, and LNERRSQ.

Figure 15 shows a classification matrix that was generated from a thresholded multiple
regression analysis of the dependent measure PERCLOS. The data that have been classified are
the same are those graphed in Figure 14. The thresholds that were used for the purpose of
classification in this case were the same as the thresholds used for the discriminant analysis
procedure (see Figure 13). Figure 15 shows classifications and misclassifications of three
categories of wakefulness. These categoriesinclude “ Awake’, “ Questionable”, and “ Drowsy”.
The categories of wakefulness are presented along the left side of the table (observed) and
across the top of the table (predicted). Asan example of how to interpret thistable find the “ 18"
in the cell located under the predicted category of “ Questionable” in the classification matrix.

This cell contains 18 misclassifications due to the fact that those 18 data points were
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R=10.87159526 R2=0.75967830 Adjusted R? = 0.75475703
F(6,293) = 154.37 p <0.0000 Std. Error of estimate: 0.04849
St. Err. St. Err.
BETA of BETA B of B 1(293) p-level
Intercept -0.003 0.004053 -0.694 0.488
INTACDEV -0.109 0.030 -0.069 0.019114 -3.603 0.000
LANDEV 0.873 0.063 0.066 0.004763 13.798 0.000
LNERRSQ -0.258 0.054 -0.002 0.000410 -4.820 0.000
STEXED 0.090 0.033 45.740 16.818827 2.720 0.007
NMRHOLD -0.204 0.045 -0.004 0.000785 -4.494 0.000
THRSHLD 0.250 0.041 0.231 0.037904 6.098 0.000

Figure 14: Scatterplot of PERCLOS Data Shown With Regression Summary.

97




Predicted

Group Percent Correct Awake Questionable Drowsy
Awake 89.76 184 18 3
Observed Questionable 47.27 7 21 16
Asleep 62.75 ’ 3 16 | 32
Total 79.00 194 55 51

PERCLOS (R = 0.872).
Apparent Accuracy Rate (large misclassifications): 0.98

Apparent Accuracy Rate (all misclassifications):  0.79

Figure15: Classification Matrix Generated From Multiple Regression Anaysis of
PERCLOS Data. (Independent variables employed included Steering,
Accelerometer, LANDEVNAR, LNMNSQ, LANEX, & LNERRSQ.)
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classified as“ Questionable” by the multiple regression equation but were actualy in the
“ Awake' category. A “large error” is defined as any misclassification in which the predicted
classification is two categories away from the observed (actual) classification. For example,
datawithin acell predicted as“drowsy” that was actually “awake’ has been missclassified
by two cells. The cells containing “184", “21", and “ 32 are correct classifications, or hits.
As stated earlier, when performing the multiple regression analyses the Bweights of
various measures were first examined. By examining the Bweights the experimenters were
able to reduce linear dependency between variables. However, B, the nonstandardized
numbers attained from multiple regression analyses, are the values that could be used for
further application. The B values are coeffkients that can be used to create a drowsy driver
detection algorithm.

Discriminant Analyses

The results of the discriminant analyses that were run corresponded, in general, with the
results attained from the multiple regression analyses. In other words, a high R value resulting
from multiple regression usually resulted in an accurate classification matrix. However, it was
found that in some instances several of the variables that significantly contributed to
drowsiness prediction with multiple regression were not significant with discriminant analysis.
The dropping out of previously significant prediction measures was most profound when the
set of variables being examined included |ane measures or high pass heading measures.

Tables 10, 11, and 12 are summary tables of results obtained from the * discriminant
analyses. Table 10 shows APARs (apparent accuracy rates) for large classification errors.
Large errors are defined as misclassifications in which a prediction of “awake” is made when
the subject is actually “drowsy” or vice versa. More complete results of the discriminant

analyses can be seen in Wreggit, Kim, and Wierwille (1993).
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Table 10: Summary Table of Two Category Discriminant Analyses Results’] Showing APAR..

Independent Measures

Dependent Measures

AVEOBS | EYEMEAS | NEWDEF | PERCLOS | MASTER
D | Steering and Accelerometer
84.0 83.7 81.3 85.0 82.7
E Steering, Accelerometer, & HPHDGDEV/VAR
84.7 84.3 81.7 89.7 85.7
F Steering, Accelerometer, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ 88.7 85.3 84.3 90.33 89.67
G | Steering, Accelerometer, & all lane measures * * A
(includes LNRTDEV/VAR) 88.0 83.0
H Steering, Accelerometer, al lane measures, & *
DSYAWDEV/VAR 89.0 85.0 83.7
| A/O Task Measures Only
87.0 84.0 83.0 85.0 86.0
J A/O Task, Steering, & Accelerometer Accel. Accdl.
92.0 86.0 88.0 88.0 92.0
K | A/O Task, Steering, Accelerometer, & Accel. A Accel. D
HPHDGDEV/VAR. 94.0 91.0
L A/O Task, LANDEV/VAR, LNMNSQ, LANEX, & D D
LNERRSQ 87.0 89.0
M A/O Task, Steering, Accelerometer, LANDEV/VAR, D
LNMNSQ, LANEX, & LNERRSQ 96.0 92.0
N Heart, Steering, & Accelerometer
85.7 83.7 82.67
O | Heart, Steering, Accelerometer, & HPHDGDEV/VAR O O
87.0 83.0
P | Heart, Steering, Accelerometer, LANDEV/VAR, O
LNMNSQ, LANEX, & LNERRSQ 89.3 85.7
Q | Heart, Steering, Accelerometer, & all lane measures * A
(includes LNRTDEV/VAR) 87.7
R Heart, Steering, Accelerometer, all lane measures, & O steer/LNRT
DSYAWDEV/VAR 84.0
S | A/O Task and Heart
83.0
T A/O Task, Heart, Steering, & Accelerometer Accel. Accel.
92.0 85.0
U | A/O Task, Heart, Steering, Accelerometer, & O O O
HPHDGDEV/VAR
\% A/O Task, Heart, LANDEV/VAR, LNMNSQ, d d
LANEX, & LNERRSQ
A/O, Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ
KEY:
A Inthese discriminant analyses introduction of variable did not improve prediction value. See entry
directly above for model with same prediction value and fewer terms.
(J Heart Measures did not improve prediction value as compared with non-heart equivaent. See
corresponding non-heart entry for model with same prediction value and fewer terms.
D A/O task measures did not improve prediction value as compared with non-A/O task measure equivalent.
See corresponding non-A/O task measure entry for model with same prediction value and fewer terms.
* A cell designated with an asterisk could have been given the A symbol. However, the asterisk denotes a
substantially changed algorithm in term of measures used.
NOTES: - Blank cellsindicate that analysis was not computed because corresponding regression did not show

improvement in R vaue.

- Any measure specified in a cell was deleted because of nonsignificance.
- Letter in left-hand column corresponds to appendix (Wreggit, Kim, and Wierwille, 1993) in

which analysisis presented.
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Table 11: Summary Table of Three Category Discriminant Analyses Results Showing APAR
For All Classification Errors.

Independent Measures Dependent Measures
AVEOBS | EYEMEAS | NEWDEF | PERCLOS | MASTER
D | Steering and Accelerometer
72.7 80.7 74.0 78.3 77.7
E Steering, Accelerometer, & HPHDGDEV/VAR
73.0 81.0 73.3 81.3 80.3
F Steering, Accelerometer, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ 77.0 82.7 717 85.0 82.3
G | Steering, Accelerometer, & all lane measures * A
(includes LNRTDEV/VAR) 74.7 75.3
H Steering, Accelerometer, al lane measures, &
DSYAWDEV/VAR 78.3 83.0 73.0
| A/O Task Measures Only
81.0 82.0 72.0 79.0 80.0
J A/O Task, Steering, & Accelerometer Accdl.
87.0 85.0 89.0 77.0 85.0
K | A/O Task, Steering, Accelerometer, & Accel. A D Accel.
HPHDGDEV/VAR. 90.0 87.0
L A/O Task, LANDEV/VAR, LNMNSQ, LANEX, & D
LNERRSQ 86.0 79.0 82.0
M A/O Task, Steering, Accelerometer, LANDEV/VAR, D
LNMNSQ, LANEX, & LNERRSQ 89.0 90.0
N Heart, Steering, & Accelerometer
72.7 79.0 75.0
O | Heart, Steering, Accelerometer, & HPHDGDEV/VAR O O
73.0 76.3
P Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ 78.3 76.7 83.7
Q | Heart, Steering, Accelerometer, & all lane measures * A
(includes LNRTDEV/VAR) 77.7
R Heart, Steering, Accelerometer, all lane measures, & * LNRT
DSYAWDEV/VAR 7.7 77.3
S | A/O Task and Heart
77.0
T A/O Task, Heart, Steering, & Accelerometer Accdl. Accdl.
85.0 89.0
U | A/O Task, Heart, Steering, Accelerometer, & 0 d d
HPHDGDEV/VAR
\% A/O Task, Heart, LANDEV/VAR, LNMNSQ, d
LANEX, & LNERRSQ 82.0 D
A/O, Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ
KEY:
A Inthese discriminant analyses introduction of variable did not improve prediction value. See entry
directly above for model with same prediction value and fewer terms.
(J Heart Measures did not improve prediction value as compared with non-heart equivaent. See
corresponding non-heart entry for model with same prediction value and fewer terms.
D A/O task measures did not improve prediction value as compared with non-A/O task measure equivalent.
See corresponding non-A/O task measure entry for model with same prediction value and fewer terms.
* A cell designated with an asterisk could have been given the A symbol. However, the asterisk denotes a
substantially changed algorithm in term of measures used.
NOTES: - Blank cellsindicate that analysis was not computed because corresponding regression did not show

improvement in R vaue.

- Any measure specified in a cell was deleted because of nonsignificance.

- Letter in left-hand column corresponds to appendix (Wreggit, Kim, and Wierwille, 1993) in
which analysisis presented.
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Table 12: Summary Table of Three Category Discriminant Analyses Results Showing APAR
for Large Classification Errors.

Independent Measures Dependent Measures
AVEOBS | EYEMEAS | NEWDEF | PERCLOS | MASTER
D | Steering and Accelerometer
93.3 87.0 91.7 94.0 95.0
E Steering, Accelerometer, & HPHDGDEV/VAR
94.33 88.3 91.3 96.3 96.7
F Steering, Accelerometer, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ 96.7 90.0 92.0 97.3 97.0
G | Steering, Accelerometer, & all lane measures * A
(includes LNRTDEV/VAR) 95.7 93.0
H Steering, Accelerometer, al lane measures, & * *
DSYAWDEV/VAR 95.7 90.3 92.7
| A/O Task Measures Only
89.0 87.0 91.0 95.0 94.0
J A/O Task, Steering, & Accelerometer Accdl. Accdl.
93.0 90.0 93.0 96.0 99.0
K | A/O Task, Steering, Accelerometer, & Accel. A D Accel.
HPHDGDEV/VAR. 98.0 99.0
L A/O Task, LANDEV/VAR, LNMNSQ, LANEX, & D
LNERRSQ 93.0 100.0 94.0
M A/O Task, Steering, Accelerometer, LANDEV/VAR, D
LNMNSQ, LANEX, & LNERRSQ 99.0 99.0
N Heart, Steering, & Accelerometer
94.3 86.3 93.00
O | Heart, Steering, Accelerometer, & HPHDGDEV/VAR O O
95.3 93.7
P Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ 96.0 94.7 96.7
Q Heart, Steering, Accelerometer, & all lane measures A
(includes LNRTDEV/VAR) 96.33
R Heart, Steering, Accelerometer, all lane measures, & * LNRT
DSYAWDEV/VAR 96.0 95.0
S | A/O Task and Heart
92.0
T A/O Task, Heart, Steering, & Accelerometer Accdl. Accdl.
94.0 96.0
U | A/O Task, Heart, Steering, Accelerometer, & 0 d d
HPHDGDEV/VAR
\% A/O Task, Heart, LANDEV/VAR, LNMNSQ, d
LANEX, & LNERRSQ 96.0 D
A/O, Heart, Steering, Accelerometer, LANDEV/VAR,
LNMNSQ, LANEX, & LNERRSQ
KEY:
A Inthese discriminant analyses introduction of variable did not improve prediction value. See entry
directly above for model with same prediction value and fewer terms.
(J Heart Measures did not improve prediction value as compared with non-heart equivaent. See
corresponding non-heart entry for model with same prediction value and fewer terms.
D A/O task measures did not improve prediction value as compared with non-A/O task measure equivalent.
See corresponding non-A/O task measure entry for model with same prediction value and fewer terms.
* A cell designated with an asterisk could have been given the A symbol. However, the asterisk denotes a
substantially changed algorithm in term of measures used.
NOTES: - Blank cellsindicate that analysis was not computed because corresponding regression did not show

improvement in R vaue.

- Any measure specified in a cell was deleted because of nonsignificance.

- Letter in left-hand column corresponds to appendix (Wreggit, Kim, and Wierwille, 1993) in
which analysisis presented.
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Table 13 contains two columns of numbers. One columns consists of three-category
threshol ded regression results and the other consists of three-category discriminant analysis
results. Thistable allows comparison of the results of the thresholded regression models with
corresponding three-category discriminant analysis results. When comparing these results it
can be seen that the gain in prediction accuracy from discriminant analyses when compared
with that of multiple regression is negligible. Two-category thresholded multiple regression
analyses were not carried out for comparison with the two-category discriminant analyses

because the results would have corresponded closely with the three-category results.
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Table 13: Comparison of Apparent Accuracy Rates for Thresholded Regression Models and
Corresponding Discriminant Analysis Models. (Comparisons are for the Steering,

Accelerometer, LANDEVNAR, LNMNSQ, LANEX, and LNERRSQ independent

measure Cases).
Definitional (Dependent) Typeof Accuracy Regression Results Three-Category
Measures Discriminant Analyses
APAR (Large Errors) 0.957 0.967
AVEOBS
APAR (All Errors) 0.753 0.770
APAR (Large Errors) 0.937 0.900
EYEMEAS
APAR (Large Errors) 0.780 0.827
APAR (All Errors) 0.957 0.920
NEWDEF
APAR (All Errors) 0.710 0.717
APAR (Large Errors) 0.980 0.973
PERCLOS
APAR (All Errors) 0.790 0.850
APAR (Large Errors) 0.980 0.970
MASTER
APAR (All Errors) 0.830 0.823
APAR (Large Errors) 0.962 0.946
AVERAGES OF
ABOVE|APAR (All Errors) 0.772 0.797
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DISCUSSION AND CONCLUSIONS

In general, the five definitiona (dependent) measures of drowsiness that were
employed in the algorithm development phase were reasonably predictable. Discriminant
analyses showed, in particular, that the number of large errorsisrelatively small. Infact,ina
few cases the number of large errorsisas|ow as one or two per 100 cases. In addition, the
difference between discriminant analysis results and multiple regression results was quite
small in many cases and nonexistent in others.
Models Induding Heart Measures Versus Models Not Including Heart Measures

The potentia gains are quite modest if it is assumed that we could secure a
plethysmograph to an automobile driver. When comparing heart and non-heart modelsin
Tables 10-12 (lines 1 through 5 versus 11 through 15) the number of open cells (cells
containing no R value or APAR number), cells containing squares, and cells containing solid
trianglesin lines 11 through 15 demonstrates that in many cases there was no improvement
when heart rate measures were introduced. The R value of NEWDEF improved by
approximately 0.05, when heart measures are added. However, in most cases the addition of
the heart rate variables contributes little or nothing to the prediction accuracy of drowsiness.
On the whole, it is not worth encumbering the driver with a plethysmograph to obtain heart

rate measures for the dlight improvement in the prediction of drowsiness.

Modelsin which A/O-task measures have been introduced produce relatively high

predictive values compared with non-A/O task measure results as seen in Tables 10 through
12. The number of large errorsisin the range of 1% or less. Results of this nature suggest
that the A/O task does contribute to prediction accuracy. However, it must be recognized
that the A/O-task models are based on data from four subjects and therefore the models may
have higher R values and APAR values because it is easier to fit amodel to four subjects than

to twelve subjects.
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Overview

We conclude on the basis of Table 13 that regression models, after thresholding, are
capable of producing comparable accuracy to three-category (two-threshold) discriminant
anaysis models. In fact, large errors are slightly fewer in multiple regression than in
discriminant analysis. However, the total number of errorsisslightly greater for multiple
regression than for discriminant analysis.

While the models developed in this study are relatively accurate, the fact remains that
they will produce some false alarms (afase alarm is defined as an outcome in which an alert
driver is diagnosed as drowsy). The best estimate of the false alarm rate for drivers who have
been sleep deprived is that given by the large error APARS that appear in Table 13. The
results suggest that error rates of 2% to 3% are likely to occur. Error rates are of course
dependent on the proportion of time that drivers are alert; questionable, and drowsy. (Error
ratesfor alert drivers are likely to be lower because they would be less likely to produce
model outputs near threshold.)

Thefact that afinite false alarm rate remains suggests that a two-stage detection
agorithm procedure should be used. In thefirst stage, the A/O task would not be performed
and an agorithm appearing in rows one through five of Table 9 would be used. Once
threshold is exceeded, indicating potential drowsiness, the driver would be asked to perform
the A/O task. If the A/O-task algorithm then produced a value above threshold the driver
would be assumed to be drowsy. A two-step algorithm of this type might produce
sufficiently low false alarm rates so as to be acceptable for applications.

Thefirst stage of detection involves driver-vehicle performance measures only. It is
suggested that the first and third rows of Table 9 represent the most viable algorithms. The
third row assumes the availability of alane track and provides better accuracy than row one.
However, if alane track is not available the first row could be used. Algorithmsin the first

row of Table 9 include steering and lateral accelerometer measures. These two measures are
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assumed to be nearly 100% reliable and should be used exclusively if avalid lane track is not
available.

With regard to the predictability of the definitional measures of drowsiness, results
demonstrate that PERCLOS and MASTER are most predictable, followed by EYEMEAS,
AVEOBS, and NEWDEF. These results are best seen in Table 13 but also show up in Tables
9,10, 11, and 12. In general, the results suggest that the algorithms developed by regression
and using athreshold with atwo stage process should provide a viable, accurate, and low
false darm system of detection for drowsy drivers.

On the basis of Table 13 it would be concluded that a two-category regression model
would have comparable accuracy to a two-category discriminant analysis model. Because of
the comparable accuracy obtainable for regression modelsit is recommended that only
regression models with thresholds be implemented in future validation and full scale studies.
The advantage of using thresholded regression models is that the threshold(s) can be adjusted
for sensitivity in operational settings. Discriminant analysis models, on the other hand, must
be recomputed for each new setting of threshold. Thiswould involve an on-line optimization

Process.
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Chapter Five
Validation of Previously-Developed Drowsy-Driver Detection Algorithms
(This chapter represents an extended summary of work reported in the Fifth
Semiannual Research Report, dated April 15, 1994, and referred to as

Wreggit, Kirn, and Wierwille, 1994)
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INTRODUCTION

The validation experiment was a multipurpose experiment, designed not only for
validation, but also for the examination of several additional research issues. Chapter Six
describes these additional issues, including corresponding analyses and results. The study
described in the present chapter was directed at determining how well previously developed
drowsy-driver detection algorithms (Wreggit, Kirn, and Wierwille, 1993) perform when they
were applied to new data. Numerous algorithms were developed and have been previously
reported (Wreggit, Kirn, and Wierwille, 1993). While estimates of algorithm accuracy were
obtained along with the development of the algorithms, it was not certain that such estimates
could be relied upon for new groups of drivers operating under similar conditions. Therefore,
this study focuses on the application of typical algorithmsto anew data set, to obtain a
“validated” estimate of accuracy. Accordingly, this experiment was conducted having the
primary purpose of algorithm validation, that is, determining algorithm classification
accuracy for datafrom anew set of driver-subjects. Accuracy of typical algorithms applied
to the new data set was determined through the use of multiple regression and classification
matrices. The accuracy of the classification matrices constructed during the algorithm
devel opment study was compared with the accuracy of the classification matrices constructed
in the validation study. A comparison of resulting R values from the two studies was aso
undertaken

Sleep deprived subjects drove an automobile simulator for approximately 2 /2 hours
during the night. The driving time and duration were approximately the same as was
experienced by subjectsin the algorithm development study.

In the algorithm devel opment study four subjects did nothing but drive, another four
performed occasional tasks asthey drove, and another four performed a subsidiary task,
called an A/O task, asthey drove. The A/O task consisted of auditory presentation of words.
The subjects responded by means of push-buttons labeled Y ES and NO, depending on
whether or not the presented word contained the target letters A or O. In the validation
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experiment, all driver-subjects drove with cruise control for two quartiles of the run and
without cruise control for the other two quartiles. They also performed the A/O task for two
quartilesand did not perform the task during the other two quartiles. During the validation
experiment the subjects did not interact with the dash board controls. Each driver/subject
thus experienced four quartiles in which all combinations of cruise/no cruise and A/O task/no
A/O task were presented. Order of presentation was counterbalanced across subjects. The
reasons for using a dightly modified design in the validation experiment were:

1. It was desired to determine algorithm accuracy under similar, but not identical

conditions, thereby “simulating” the likely conditions of an application, and
2. The data could be used for additional purposes, such as determining the effects of

cruise control on algorithm detection accuracy.
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METHOD
Subjects

In this validation study, data were collected from twelve subjects, as was the case for
data collection for the algorithm devel opment study (Wreggit, Kirn, and Wierwille, 1993).
The subject population was located in the Blacksburg, Virginia area and the same screening
procedures were used as the previous phase of the study. However, eight males and four
females were used during the validation study instead of six males and six females. The use
of twice as many males as females was determined to be a more accurate representation of
the high risk driver population (Knipling and Wierwille, 1993). The subjects ranged in age
from 18 to 47. The subjects were paid according to the hourly rate of the previous phase of
the study and were involved with the experiment for approximately the same amount of time.

During data collection one subject stayed completely awake and had a heart rate of 90
beats per minute for the entire run. 1t was suspected by the experimenters that this subject
may have taken caffeine pills or some other form of stimulant during atrip to the rest room
prior to the driving session. This subject’s data were not used. While running another subject
the EEG electrodes loosened late in the run. Examination of the data led the experimentersto
suspect that the EEG data had been corrupted and therefore, the subject’ s data were not used.
The two problem subjects were replaced with two additional subjects, resulting in atotal of
twelve complete data sets.

Apparatus

The apparatus employed was identical to that of the previous phase of the study with
one exception.

Simulator. The simulator was equipped with a cruise control system that allowed the
experimenters to place the smulator in a cruise-control state which locked the velocity of the
simulated automobile at 60 miles per hour. The cruise control could also be switched off by
the experimenters, at which time it was necessary for the driver to maintain the speed of the

automobile using the accelerator pedal.
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Experimenta] Design

The experimental design involved aregression approach to data analysis. All drivers
were subjected to the following conditions during driving: with cruise control/with task, with
cruise control/without task, without cruise control/with task, and without cruise
control/without task. The “task” in this case refersto the A/O subsidiary task described
previously in the algorithm development chapter of this report. Each subject performed the
A/O task for one-half of the entire run. Therefore, it was necessary for each subject to
perform the A/O task for 72 minutes. While the A/O task performance measures were being
collected, all other measures were being collected simultaneously.  Subjects received counter
balanced combinations of the conditions. Each condition lasted 36 minutes. The subjects did
not interact with the instrument panel as was done by some subjects in the algorithm
development phase.

The performance and physiological measures that were gathered during the study were
the same as the performance and physiological measuresincluded in the previously
devel oped drowsiness detection algorithms.
Procedure

All subjects underwent the same pre-driving procedures as the subjectsin the
development phase and stayed at the Vehicle Analysis and Simulation Lab for approximately
the same amount of time.

Experimental task. All subjects drove the simulated automobile asif it were an

actual car. All subjects performed the same secondary (A/O) task that was employed
during the algorithm development phase. In addition, a cruise control condition was
incorporated into the driving task. When the cruise control was engaged the simul ated
automobile maintained 60 miles per hour. When the cruise control was not engaged the
subject was asked to maintain approximately 60 miles per hour.~Subj ects drove for atotal

of 156 minutes.

112



Rata Analysis Overview

All measures were first computed over one-minute intervals. Data manipulation
procedures were then undertaken to prepare data for statistical analyses. Initidly, the first
two minutes from all measures were deleted. This was done so that the data to be analyzed
did not include the time when subjects were “ settling in” to the driving task. This procedure
was consistent with the algorithm devel opment phase.

All independent measures were baselined using the average of the first ten minutes of
data (after the actual first two minutes had been deleted). The average of the first ten minutes
of data was then subtracted from every subsequent data point within that measure. Each data
point consisted of a one-minute average of data. After completion of the baselining
procedure the ten minutes of data used for the baselining average were discarded. Following
the baselining procedure the data were averaged across six-minute intervals. See Figure 16
for apictoria overview of the data manipulation procedure.

Asseenin Figure 17 the dependent (definitional) variable PERCL OS was graphed for
each subject with threshold lines drawn. The threshold lines were devel oped during the
algorithm development study and were placed over the new data set. In this graph, the first
24 points on the abscissa correspond to subject 1, the next 24 points correspond to subject 2,
and so on. The corresponding graphs for AVEOBS, EYEMEAS, NEWDEF, and MASTER
can be seen in Wreggit, Kim, and Wierwille (1994).

After data manipulation, previously developed drowsi ness detection algorithms were
applied to the new data set. Once algorithm outputs (predicted values) were calculated, a
regression analysis was run between those val ues and the applicable definitional measure
(observed) values. After completion of this procedure a comparison between the R values
attained from the original data and new data-was carried out. The algorithms that were tested
can be seen highlighted in Table 14. (Those with gray background were not tested.)

113



2 minutes; The first 2 minutes are deleted from all data

First 10 minutes after deletion of 2 previous minutes 10 minutes used for baselining*

10 minute average calcul ated 10 minutes discarded after baseline

6 minutes. average of 6 one-minute measure values

6 minutes: average of 6 one-minute measure values

6 minutes: average of 6 one-minute measure values

6 minutes: average of 6 one-minute measure values

6 minutes. average of 6 one-minute measure values

6-minute averages continued until the entire set of one-
minute segments (144 minutes) was manipulated. 156 total
minutes were used due to the deletion of thefirst 12

minutes of data. Therefore, 24 data points of 6-minute

averages were created.

* Baselining isa procedure in which the initial ten minutes of data are averaged and then
subtracted from all subsequent one-minute segments. Baselining was carried out so that

data relative to the subject’ sinitial data values could be obtained.

Figure 16: Pre-Analysis Data Manipulation Procedures.
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Table 14: Summary Table of Multiple Regression Results (Calculated in the Devel opment
Phase) Showing Algorithms Used for Validation.

Independent Measures

Dependent Measures

AVEOBS EYEMEAS NEWDEF PERCLOS MASTER
D | Steering and Accelerometer
0.747 0.764 0.677 0.789 0.801
E Steering, Accelerometer, & HPHDGDEV/VAR
0.793 0.809 0.700 0.847 0.852
F Steering, Accelerometer, LANDEV/VAR, LNMNSQ,
LANEX, & LNERRSQ 0.826 0.837 0.731 0.872 0.886
G | Steering, Accelerometer, & al lane measures A A
(includes LNRTDEV/VAR) 0.824 0.757 0.872
H | Steering, Accelerometer, al lane measures, & * * A A
DSYAWDEV/VAR 0.826 0.836 0.751
I A/O Task Measures Only
0.761 0.768 0.660 0.810 0.822
J A/O Task, Steering, & Accelerometer Accel. Accel.
0.824 0.824 0.740 0.836 0.876
K | A/OTask, Steering, Accelerometer, & Steering A Accel.
HPHDGDEV/VAR. 0.917 0.855 0.868 0.903
L A/O Task, LANDEV/VAR, LNMNSQ, LANEX, & D
LNERRSQ 0.874 0.768 0.875 0.903
M A/O Task, Steering, Accelerometer, LANDEV/VAR, D D
LNMNSQ, LANEX, & LNERRSQ 0.922 0.902 0.936
N | Heart, Steering, & Accelerometer 0 0
0.785 0.772 0.711
(@] Heart, Steering, Accelerometer, & HPHDGDEV/VAR 0
0.813 0.761 0.851 0.854
P | Heart, Steering, Accelerometer, LANDEV/VAR, 0 0
LNMNSQ, LANEX, & LNERRSQ 0.838 0.774 0.824
Q | Heart, Steering, Accelerometer, & all lane measures * 0 0 0
(includes LNRTDEV/VAR) 0.826 0.802
R | Heart, Steering, Accelerometer, all lane measures, & Lane Rate 0 A 0
DSYAWDEV/VAR 0.837 0.797
S | A/O Task and Heart O O O O
0.774
T | A/OTask, Heart, Steering, & Accelerometer Accel. 0 0 0
0.837 0.810
U | A/OTask, Heart, Steering, Accelerometer, & 0 A Accel.
HPHDGDEV/VAR 0.918 0.880 0.909
Vv A/O Task, Heart, LANDEV/VAR, LNMNSQ, 0 0 0
LANEX, & LNERRSQ 0.823 0.910
AJO, Heart, Steering, Accelerometer, LANDEV/VAR, 0 D DD 0 0
LNMNSQ, LANEX, & LNERRSQ
KEY:
A Inregression analysesintroduction of variable did not improve R value. See entry directly above for

O

D
*

NOTES:

model with same R and fewer terms.
Heart Measures did not improve regression as compared with non-heart equivalent. See corresponding
non-heart entry for model with same R value and fewer terms.
A/O task measures did not improve regression as compared with non-A/O task measure equivaent. See
corresponding non-A/O task measure entry for model with same R value and fewer terms.
A cell designated with an asterisk could have been given the A symbol. However, the asterisk denotes a
substantially changed algorithm in term of measures used.

- Letter in left-hand column corresponds to appendix (Wreggit, Kim, and Wierwille, 1993) in

which analysisis presented.

- Cellsthat are not grayed-out indicate algorithms that were validated by applying new data.
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The comparison between the R values attained from the original data and the new data
was accomplished using t-test and analysis of variance procedures. Multiple R values were
used as data for these comparisons.

The algorithms that were chosen for validation were selected for severa reasons. It
was desirable for the R values to be relatively high and for the measures within the
agorithms to be attainable in anbn-the-road vehicle. Also, it was necessary to choose
agorithms that could be employed in a step-up, step-down procedure. For example, if al
incoming signals to be used in an algorithm are valid, the best available algorithm for
drowsiness detection would be used. However, if one of the sensors necessary for the best
agorithm is not providing avalid signal, the next best algorithm that does not require the
invalid signal would be used.
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VALIDATION RESULTS:
DRIVER-VEHICLE PERFORMANCE MEASURES ONLY

This section describes the validation process for algorithms using driver-vehicle
performance measures only. During the experimental runs there were intervals during which
the A/O task was performed and there were intervals during which the A/O task was not
performed. Similarly, there were intervals during which the cruise control was engaged and
during which it was not engaged. Throughout these various intervals, driver-vehicle
performance measures were computed. This section reports on the validation results using
the driver-vehicle performance measures only. That is, it does not include measures taken
from the A/O task itself and it does not include any attempt to include forward speed in
agorithm vaidation. The term “all-data’ indicates that performance data are included from
al 156 minutes of each driver’s data run, regardless of whether or not the A/O task was being
performed and regardless of whether or not the simulated vehiclewasin cruise. When
specific sections of the data runs are referred to they are so designated. For example, the
section of the run in which the A/O task was being performed and cruise was not engaged is
referred to as* With Task, W/O Cruise”
Application of Algorithms to New Data

Table 15 isasummary of 1) results that were attained from multiple regression analyses
of the original (algorithm devel opment) data and 2) the correlation between new observed data
and the algorithm output when the algorithm was applied to new data. The R values attained
from the origina data set are included in this table so that easy comparison between R values
can be made. There was no general decrease in predictive power of the algorithms when
applied to the new data t(9) = 0.24, p > 0.05. The average R values of the original and new
data can be seen graphically in Figure 18.

The new data were divided into four categories, including combinations of cruise

control and A/O secondary task so that the effects of cruise control and A/O task could be
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Table 15: R Values From Multiple Regression Analyses of Original Dataand R Values

Achieved After Application of Algorithmsto New Data.

| ndependent Measures Dependent Measures
AVEOBS | EYEMEAS| NEWDEF | PERCLOS | MASTER
(original) | (origind) (origina) | (original) | (original)
0.747 0.764 0.677 0.789 0.801
D Bteering and Algorithm | Algorithm | Algorithm | Algorithm | Algorithm
Accelerometer Dla D2a D3a D4a D5a
(new) (new) (new) (new) (new)
0.727 0.777 0.746 0.800 0.837
(original) | (original) | (original) (original) | (original)
Steering, 0.826 0.837 0.731 0.872 0.886
A ccelerometer,

F LANDEVNAR, | Algorithm | Algorithm | Algorithm | Algorithm | Algorithm
LNMNSQ Fla F2a F3a Fda F5a
LANEX,

&LNERRQ (new) (new) (new) (new) (new)

0.570 0.838 0.819 0.862 0.885

NOTES: Lettersin left column indicate appendices containing detailed analyses on original
data set (Wreggit, Kim, and Wierwille, 1994).

Algorithm numbers located in each cell correspond to the multiple regression table
within agiven appendix (Wreggit, Kim, and Wierwille, 1994).

Classification matrices were created for the highlighted (bolded) R values
(Wierwille, Kim, and Wreggit, 1994). (Also see Appendix A.)
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examined (Figure 18). A 2 x 2 within subjects analysis of variance was performed to test for
the effects of cruise control and A/O task performance on R values. No significant main
effects were seen (Cruise Control: E( 1,9) =0.177, p > 0.05, A/O Task: F(1,9) =0.129, p >
0.05). However, asignificant cruise control by A/O task interaction was indicated by the
results of the analysis of variance F(1,9) = 10.67, p < 0.01. To determine how the groups
differed, a Tukey. HSD test was used. The results of the post hoc test showed that only the
Without Task/with Cruise condition and the With Task/With Cruise condition were
significantly different from one another at the a = 0.05 level. The differences between the
other pairs of conditions were not significant at thea = 0.05 level.

Graphing the new observed data (definitional measure values) and the new predicted
data (from application of agorithms) demonstrated that it was possible to track any portion
of the new data with the previously devel oped detection algorithms. In Figure 19, predicted
data tracks the observed PERCL OS data quite accurately. Corresponding graphs for
AVEOBS, EYEMEAS, NEWDEF, and MASTER can be seen in Wreggit, Kim, and
Wierwille (1993).

Figure 20 showstypical classification matricesthat were generated from a
thresholded multiple regression analysis of the definitional measure PERCLOS. The upper
matrix shows classified original data (algorithm output) and the lower matrix shows
classified new data (algorithm output). The data that were classified are the same as those
graphed in Figure 19. The thresholds that were used for the purpose of classification were
the same as those produced during the a gorithm development phase. The thresholds for
PERCLOS areillustrated in Figure 17. Table 16 is a summary of the apparent accuracy rates
generated from the various classification matrices. This table shows that the difference
between the apparent accuracy rates of original and new datawere negligible. See Wreggjit,
Kirn, and Wierwille (1994) for the corresponding classification matrices.

Regression lines were drawn using the bolded arigind R values seen in Table 15 and
the corresponding APAR values of the new data in Table 16. The two plots give a general
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Predicted

Group % Correct Awake Questionable | Drowsy
Original Awake 88.29 181 22 2
Observed Questionable 43.18 11 19 14

Drowsy 52.94 2 22 27

Total 75.67 194 63 43

PERCLOS (R Vaue = 0.789)
Apparent Accuracy Rate (large misclassifications):  0.987
Apparent Accuracy Rate (all misclassifications): 0.757

Classification Matrix Generated From Multiple Regression Analysis of Originad PERCLOS
Data Resulting in Algorithm D4a. (Independent variables employed included Steering and
Accelerometer.)

Predicted
Group % Correct Awake Questionable Drowsy
New Awake 79.32 188 40 9
Observed Questionable 30.00 8 6 6
Drowsy 90.32 1 2 28
Total 77.08 197 48 43

PERCLOS (R Vaue = 0.800)
Apparent Accuracy Rate (large misclassifications):  0.965
Apparent Accuracy Rate (all misclassifications): 0.771

Algorithm D4a Applied to New Data and Compared with New Observed PERCL OS Data

Figure 20: Classification Matrices Showing Accuracy of Algorithm D4a When Applied to

Original Data (Upper) and New Data (Lower)
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Table 16: APAR Summary Table Generated from Classification Matrices of Original and New

Data -- Including All Misclassifications and Large Misclassifications (APAR values

correspond to R valuesin Table 15).

Independent Dependent Measures
Measures
AVEOBS EYEMEAS NEWDEF PERCLOS MASTER
(original) (original) (original)
Large 0.980 Large 0.980 | Large 0.980
Steering and All 0773 All 0773 | All  0.773
D| Acceleromete
r Algorithm Algorithm Algorithm
D5a D5a D5a
(new) (new) (new)
(original) (original) (original) (original)
Steering, Large 0.980 | Large 0.980 | Large 0.980 | Large 0.980
Accelerometer, Al 0773 | Al 0773 |All 0773 | Al  0.773
| LANDEV/IVAR,
LNMNSQ Algorithm Algorithm Algorithm Algorithm
LANEX, &
D5a D5a D5a D5a
LNERRSQ
(new) (new) (new) (new)
NOTES. Lettersin left column indicate appendices containing detailed analyses on origina

data set (Wreggit, Kirn, andWierwille, 1994).

Algorithm numbers located in each cell correspond to the multiple regression table

within a given appendix (\Wreggit, Kirn, andWierwille, 1994). (Also see
Appendix A.)
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idea of what APAR value can be achieved given certain drowsiness prediction R values for
twelve subjects. In other words, if an algorithm based on data from twelve subjectsis
developed, it can be expected to produce APAR valuesin avalidation study as provided by
the regression lines in Figure 21. The reader is cautioned that the correlation coefficients
associated with the data are not significant (p > 0.05) (probably as a result of small sample

size), and therefore the prediction capabilities provided by Figure 2 1 are indicative and not

conclusive.
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VALIDATION RESULTS:
INCLUSION OF A/O TASK PERFORMANCE MEASURES

Models Containing A/O Task Performance Measures

This section contains the results of validation tests that include A/O task performance
measures. |n some cases these measures were used by themselves in developed algorithms
and in other cases they were used in combination with driver-vehicle performance measures.
Since the A/O task was performed during only half of each subject’ s data run, the data base
used in this section is half the size of that used in the previous section.

Application of Algorithms (Employing A/O Task Measures) to New Data

As seen in Figure 22 the dependent (definitional) variable PERCL OS was re-graphed
to include only the segments of time in which the subjects performed the A/O task. The
threshold lines in the figure were devel oped during the algorithm development phase of the
study and are the same as those seen in Figures 13 and 17. In the graphs, the first 12 points on
the abscissa correspond to subject 1, the next 12 points correspond to subject 2, and so on.
The corresponding graphs for AVEOBS, EYEMEAS, NEWDEF, and MASTER can be seen
in Wreggit, Kirn, and Wierwille (1994).

Table 17 issimilar to Table 16 in that is contains a description of the algorithms that
were tested on the new data. However, Table 17 contains the original R values (those
associated with application of the algorithms to the original data set) and new R values (those
associated with application of the algorithms to the new data set) for the algorithms containing
A/O data. The table also shows the appendices in which the algorithms were presented
(Wreggit, Kim, and Wierwille, 1993).

Table 17 shows that there was a general decrease in predictive power of the algorithms
when applied to the new A/O data (average R value = 0.606) as compared with the original
data (average R value = 0.809) t(7) = 6.21, p < 0.01. Thisresult is graphed in Figure 23. The

figure also shows the effects of cruise control on the new R values. When cruise control was
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Achieved After Algorithms Were Applied to New A/O Data.

Table 17: R Vaues From Multiple Regression Analyses of Origina A/O Dataand R Values

Wreggit, Kirn, and Wierwille, 1994).

Algorithm numbers located in each cell correspond to the multiple regression table
within a given appendix Wreggit, Kirn, and Wierwille, 1994).

Classification matrices were created for the highlighted (bolded) R valuesW/reggit,
Kirn, and Wierwille, 1994). (Also see Appendix A for classification matrices

and regression summaries corresponding to algorithms 14a, Ja, L3a, and M3a.)

Independent Dependent Measures
Measures
AVEOBS EYEMEAS NEWDEF | PERCLOS | MASTER
(original) (original) (original) (original) (original)
0.761 0.768 0.660 0.810 0.822
A/O Task Algorithm Algorithm Algorithm Algorithm | Algorithm
Measures Only 1a [2a 13a l4a I5a
(new) (new) (new) (new) (new)
0.595 0.570 0.422 0.447 0.570
(original)
0.836
A/O Task,
Steering, & | -mmmmmmemem | s | e Algorithm | -------------
Accelerometer Ja
(new)
0.599
(original)
A/O Task, 0.875
LANDEV/VA
R, LNMNSQ, | --------mmmm | mmmmmmmmmmeen | e Algorithm | -------------
LANEX, & L3a
LNERRSQ
(new)
0.796
A/O Task, (original)
Steering, 0.936
Accelerometer,
LANDEVIVA | e | e | e | e Algorithm
R, LNMNSQ, M3a
LANEX, &
LNERRSQ (new)
0.845
NOTES. Lettersin left column indicate appendices containing detailed analyses on original data set
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engaged, the new R values increased significantly (from an average of 0.549 (when not
engaged) to an average of 0.677 (when engaged); t(7) = 2.50, p < 0.05.

To obtain a better understanding of drowsiness prediction using the new data. graphical
comparisons were made between the definitional measures and the algorithm outputs applied
to new data. Figure 24 shows a scatter plot of PERCLOS and algorithm J4a. As can be seen,
the algorithm seems to do a reasonable job of tracking the variations in observed
(definitional) measures, even though there are some obvious discrepancies. The
corresponding graphs for AVEOBS, EYEMEAS, NEWDEF, and MASTER can be seen in
Wreggit, Kim, and Wierwille (1994).

Figure 25 shows typical classification matrices that were generated from a thresholded
multiple regression analysis of the definitional measure PERCLOS. The upper matrix shows
classified original data (algorithm output) and the lower matrix shows classified new data
(algorithm output). The data that were classified are the same as those graphed in Figure 24.
The thresholds for PERCLOS are illustrated in Figure 22.

Table 18 is a summary of the apparent accuracy rates generated from the various
classification matrices (a complete set of the developed matrices can be seen in Wreggit,
Kim, and Wierwille, 1994). In general, the number of misclassifications appears to be
smaller than the R values would seem to indicate.

Finally, regression lines were drawn using the ariginal R values shown in Table 17 and
the corresponding APAR values of the new data in Table 18. The regression lines are shown
in Figure 26. The two plots give a general idea of the APAR value that can be achieved
given certain drowsiness prediction R values. The reader is cautioned that the correlation
coefficients associated with the data are not significant (p > 0.05), and therefore the
prediction capabilities provided by Figure 26 are indicative and not conclusive. (Again, the

probable reason for nonsignificance is sample size.)
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New PERCLOS and Algorithm #J4a Applied to New A/Q Data Segments (R = 0.599)
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Figure 24: Scatter Plot of PERCLOS Data -- Predicted vs. Observed
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Predicted

Group % Correct Awake Questionable | Drowsy
Original Awake 94.29 . 66 3 1
Observed Questionable 43.75 2 7 7

Drowsy 42.86 2 6 6

Total 79.00 70 16 14

PERCLOS (R Vaue = 0.836)
Apparent Accuracy Rate (large misclassifications):  0.970
Apparent Accuracy Rate (all misclassifications): 0.790

Classification Matrix Generated From Multiple Regression Analysis of Original PERCLOS
Data Resulting in Algorithm Ja. (Independent variables employed included A/O Task,
Steering, and Accelerometer.)

Predicted
Group % Correct Awake Questionable | Drowsy
New Awake 83.33 o112 6 2
Observed Questionable 27.27 6 3 2
Drowsy 38.46 4 4 5
Total 83.33 122‘2 13 9

PERCLOS (R Vaue = 0.599)
Apparent Accuracy Rate (large misclassifications):  0.958
Apparent Accuracy Rate (all misclassifications): 0.833

Algorithm J4a Applied to New Data and Compared with New Observed PERCLOS Data

Figure 25: Classification Matrices Showing, Accuracy of Algorithm J4a When Applied to
Original Data (Upper) and New Data (Lower)
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Table 18: APAR Summary Table Generated from Classification Matrices of Original and New
A/O Data -- Including All Misclassifications and Large Misclassifications (APAR
values correspond to R valuesin Table 17).

Independent Dependent Measures
Measures
AVEOBS EYEMEAS NEWDEF PERCLOS MASTER
Algorithm I1a | Algorithm I1la | Algorithmlla | Algorithm I1a | Algorithm I1la
A/O Task
| | Measures (new) (new) (new) (new) (new)
Only Large 0.931 | Large 0910 | Large 0.917 | Large 0.931 | Large 0.896
All 0.729 | All 0.840 | All 0.778 | All 0.847 | All 0.799
(original)
Large 0.970
All 0.790
A/OTask, | - | e | e L
J | Steering, & Algorithm Ja
Accelerometer
(new)
Large 0.958
All 0.833
A/O Task, Algorithm
LANDEV/VA L3a
R, LNMNSQ,
L | LANEX, & (new) | -mememememe-
LNERRSQ Large 0.979
All 0.868
A/O Task, (original)
Steering, Large 1.000
Accelerometer, All 0.850
M| LANDEVIVA | 0| et | e | e
R, LNMNSQ, Algorithm M3a
LANEX, &
LNERRSQ (new)
Large 0.944
All 0.799
NOTES. Lettersin left column indicate appendices containing detailed analyses on origina data set

Wreggit, Kirn, and Wierwille, 1994).

Algorithm numbers located in each cell correspond to the multiple regression table

within a given appendix Wreggit, Kirn, and Wierwille, 1994).

See Appendix A for classification matrices and regression summaries corresponding
to algorithms 14a, Ja, L3a, and M3a.
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R Value vs. All Misclassification

APAR
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Figure 26: R Values vs. New APAR Values -- APAR Includes All Misclassifications (Upper

Graph) and Large Misclassifications (Lower Graph).
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DISCUSSION AND CONCLUSIONS OF VALIDATION PHASE

When choosing the algorithms to validate, it was important that the component
measures were very reliable and attainable in an on-the-road situation. The algorithms
located in Appendices D and F (Wreggit, Kirn, and Wierwille, 1993) were chosen for the
purpose of validation since they contained both reliable and probably attainable measures.

Another important aspect of the validated models is that their use alows for a step-up,
step-down detection procedure. Some detection algorithms employed steering and lateral
accelerometer measures and another set of detection algorithms employed steering, lateral
accelerometer, and lane-related measures. Therefore, |oss of a lane-related measure does not
cause failure of the detection system. Rather, the system simply “steps-down” to a model
that does not contain lane-related measures. This would be the case if one of the sensors
necessary for the best algorithm did not provide a valid signd (i.e. lane sensors). A “step-up’
procedure involves the use of newly validated signals (i.e. lane sensors pick up valid signd
from the road).

The average R values achieved after application of drowsiness detection algorithms to
new data were found to have no significant loss in drowsiness prediction compared with the
original data upon which the algorithms were developed. Drowsiness classifications were
accomplished with only small percentages of error. The algorithms that were validated using
the driver-vehicle performance measures were found to be robust, in that no significant loss
in drowsiness prediction was observed when the detection algorithms were applied to new

data. Thisis an extremely important finding.

The Effect of Cruise Control and A/O Task on Detection Rate of Driver Performance

Measure Algorithms. The detection algorithms from Appendices D and F (Wreggit, Kim,
and Wierwille, 1994) were applied to the segments in time in which driver/subjects were
under a cruise control condition combined with the A/O secondary task. It was found that

when cruise control was engaged and the task was not being performed, the average
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drowsiness prediction R value was higher than when cruise control was engaged and the
secondary task was being performed. The higher average R value for the Without Task/With
Cruise condition is attributed to the fact that this condition is the most boring. The drivers
did not have to monitor speed or interact with the push buttons mounted on the steering
wheel while answering “ yes’ or “ no” with the secondary task. It is hypothesized that the
boredom experienced by the subjects tended to increase drowsiness. Subjects thus
experienced arange of aertness that was greater than under the other conditions. In other
words, subjects may have gone from alert to very drowsy within this condition. Therefore,
the observed data were spread out, allowing the predicted data to track (fit the data) with

higher relative success.

Validation of Algorithms Containing A/O Task Performance Measures

The detection algorithms which contained A/O task measures that were examined are
shown in Table 17. The average R value for drowsiness detection, using data other than that
which was used for the development of the algorithms, decreased significantly. Thisislikely
aresult of using only four subjects in the development of the prediction algorithms (based on
A/O task performance data). The use of four subjects in the development stage may limit the
predictive capabilities of the agorithms.

Another factor that may have contributed to the reduction of drowsiness prediction R
values with new datainvolved an unrepresentatively small amount of drowsiness observed
during the portions of runs in the new datain which the NO task was being performed. It
was observed that the * awake” classifications were the great majority of the data. Since there
was arelatively small domain of drowsiness (mostly “ awake” and few “ questionable” or
“drowsy” observations) an unrepresentatively low R value may have occurred.
Unfortunately, with the data that were collected during the validation phase, the algorithms
were not exercised to an extent that would result in R values similar to the original R values.

In other words, the new data were more tightly grouped.
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Classification matrices were constructed using observed agorithm output and observed
definitional measures of drowsiness for the new A/O task algorithms. The APAR results can
be seen in Table 18. The classification matrices resulted in surprisingly high correct
classification rates (APARS) given the relatively low R values of the prediction algorithms
based on A/O task measures. The good results of the classification matrices suggest that an
unrepresentative sample of drowsiness data was largely the cause for deflated R values
instead of alimited predictive capability of the algorithms.

It was found that the average drowsiness-detection rate was greater for algorithms applied
to new A/O data when cruise control was engaged as compared with new A/O data when cruise
control was not engaged. One explanation for this finding is that drivers/subjects did not have
to monitor their speed when cruise control was engaged. Therefore more resources could be
allocated to the driving task and the A/O task. Since this may have been the case, dert drivers
who were frequently monitoring the speed of the vehicle would have glanced at the speedometer
often. With the greater amount of time available for subjects to glance at the speedometer the
greater was the chance for the driving task and A/O task to degrade. In other words, when
cruise control was engaged, the degradation in driving performance may have been purely due
to the inattention or drowsiness of the driver.

Overview

With regard to the predictability of the definitional measures of drowsiness using the
new data set, results demonstrate that MASTER and PERCLOS are the most predictable,
followed by EYEMEAS, NEWDEF, and AVEOBS. This order of predictability is the same
as with the original data except that AVEOBS and NEWDEF are reversed. However, a
reason for this reversal may be that different drowsiness raters were used in the validation
experiment. (AVEOBS is the average subjective rating of three raters).

The findings of this study are very encouraging, and the detection models look quite

promising. It was estimated before the validation process that an average R value would be
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reduced by approximately 0.05 when the detection agorithms were applied to the new data.
Fortunately, the average R value loss was only 0.0069 across the validated algorithms.

We conclude on the basis of the validation procedures carried out that the detection
algorithms based on steering and accelerometer measures, as well as on steering,
accelerometer, and lane measures are quite robust and should be used in a future on-the-road
study. Even though the agorithms were devel oped with a certain amount of “noise’, such as
interacting with instrument panel controls while driving, they do an excellent job of

drowsiness prediction when applied to new data.
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Chapter Six: Additional Analyses of the Algorithm Validation Data --
Simulator Study of the Effects of Cruise Control, Secondary Task, and
Velocity-Related Measures on Driver Drowsiness and Drowsiness Detection
{ This chapter represents an extended summary of work reported in the Sixth
Semiannua Research Report, data October 15, 1994 and referred to as Kirn,

Wreggit, and Wierwille, 1994)
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INTRODUCTION

The validation experiment described in Chapter Five (Wreggit, Kim, and Wierwille,
1994) addresses the accuracy of previously developed drowsy-driver detection algorithms
when applied to new driver-subjects. However, the validation experiment was a
multipurpose experiment, designed not only for validation of algorithms, but also for the
examination of several additional research issues. The present chapter describes these
additional issues, the corresponding analyses that were performed, and the corresponding
results that were obtained. It should be noted here that the data collected for use in the
previously discussed agorithm-validation study (Chapter Five) are the same data used in this
present study.

During the algorithm development portion of the research project (Chapter Four;
Wreggit, Kim, and Wierwille, 1993), it was observed that drivers tended to vary their speed
when they became drowsy. Velocity-related measures had not been gathered during that
phase of the project, and therefore, such measures could not be included in the main
algorithm development portion of the research. The question that arose, then, was whether or
not velocity-related measures could contribute significantly to the accuracy of drowsy-driver
detection algorithms. To answer the question, velocity-related measures were implemented
in the validation experiment.

Three velocity-related measures were obtained during the validation phase, including:
forward velocity standard deviation (FVELSD), forward acceleration standard deviation
(FACCSD), and accelerator position standard deviation (PEDDEV). New agorithms were
developed in this supplemental study using the validation experiment datain two ways.
without velocity-related measures and with velocity-related measures. Thus, a direct
comparison could be made that would alow assessment of any gains in accuracy obtainable
using velocity-related measures.

Another question that remained regarding the A/O task was whether or not the task

had an alerting effect on the driver. If so, the task would serve the dual purposes of a
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drowsiness detection aid and an aertness aid. Originaly, the purpose of the A/O task was to
provide an independent assessment of the level of drowsiness by having the driver respond to
atask of low cognitive content. However, further investigation was carried out to determine
if the A/O task does dert drowsy drivers.

Finally, the design of the validation experiment included segments in which cruise
control was engaged. In this condition, the driver did not have to control speed, just asin an
actual vehicle with cruise control engaged. Since each driver experienced both cruise control
and non-cruise control conditions, direct comparisons of aertness could be made. Thus, the
guestion of whether or not cruise control usage contributed to level of drowsiness could be
answered.

In summary, there were three main questions to be answered by the additional
analyses performed on the data from the validation experiment:

1. Do forward-velocity measures covary with level of drowsiness, and do they
improve drowsiness-detection agorithm accuracy? If so, by how much do they
improve accuracy?

2. Doesthe A/O task, which can be used as a drowsiness detection discriminator,
have an aderting effect on the driver? and.

3. Doesthe use of cruise control increase the level of drowsiness in sleep-deprived

drivers?
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METHOD
Subjects
Subjects were the same as those described in Chapter Five (Wreggit, Kim, and

Wierwille, 1994)

Apparatus.
The apparatus employed was the same as described in Chapter Five (Wreggit, Kim,
and Wierwille, 1994)
Experimental Design
The additional analyses of the data collected during the algorithm validation phase
employed a2 X 2 X 6 complete factorial within-subject design. The first two factors and
levels were as follows:
1. Speed control
a. Speed controlled by driver
b. Cruise control engaged; Speed automatically set at 60 m.p.h.
2. Subsidiary Task
a No subsidiary task
b. Auditory subsidiary task requiring response
The third factor that was considered was time interval which had six levels. The
experimental session was divided into four sections of 36 minutes each. Within each
section, six six-minute averages of the various dependent measures were calculated to
examine the effect of time on driving performance. In each section the subject underwent
one of the four possible conditions:
1. No Cruise Control, No Secondary Task
2. No Cruise Control, Secondary Task
3. Cruise Control Engaged, No Secondary Task
4. Cruise Control Engaged, Secondary Task
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Presentation order of the conditions for each subject was determined by selecting one
line from three different 4 X 4 Latin squares. Four of the male subjects completed one Latin
square, the other four males completed the second, and the four female subjects completed
the third.

Severa categories of measures were gathered for analysis in this experiment. The
collected measures are described in the algorithm development portion (Chapter Four;
Wreggit, Kirn, and Wierwille, 1993) of this paper and are the same those employed in the
algorithm-validation study. The development and validation studies, however, did not
employ velocity-related measures though these measures were collected during the
algorithm-validation phase. The collected velocity-related measures are described below.

« FVELSD: The standard deviation of the forward velocity of the vehicle.

o FACCSD: The standard deviation of the forward acceleration of the vehicle

- PEDDEV: The standard deviation of the position of the accelerator pedal relative to the
released position.

Procedure

Subject procedure. All driver-subjects underwent the same pre-driving procedures as
the driver-subjects in the algorithm devel opment phase and stayed at the Vehicle Anaysis
and Simulation Laboratory for approximately the same amount of time.

Experimental task. All subjects drove the ssmulated automobile as if it were an actual

car. The driver-subjects were instructed to drive within the right lane at all times during the
run. All subjects performed the same secondary (A/O) task that was employed during the
algorithm development phase. In addition, a cruise control condition was incorporated into
the driving task. When the cruise control was engaged the simulated automobile maintained
60 miles per hour. When the cruise control was not engaged the subject was asked to

maintain approximately 60 miles per hour. Subjects drove for atotal of 156 minutes.
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As previously mentioned, the experimental task conditions changed every 36 minutes

(after the first condition). Depending on the condition presented, the subject was asked either

to:
1 Respond to the secondary task while monitoring and maintaining a speed of
60 m.p.h.
2. Respond to the secondary task while cruise control was engaged.
3. Simply monitor and maintain 60 m.p.h.
4. Simply stay in the right lane while cruise control was engaged.
Data Analysis Overview

The pre-analysis data reduction procedures were the same as those described in
Chapter Five (see Figure 16).

After data reduction, severa different analyses were run to answer the various
research questions of the study. Unequal n’s analyses were used to determine the relationship
between speed variability and drowsiness. Each analysisinvolved a three part procedure.
Each data point (six minute average) for each subject was classified as awake (A),
guestionable (Q), or drowsy (D) for each of the five drowsiness measures. This was
accomplished using the same threshold criteria set by Wreggit, Kim, and Wierwille (1993).

Once the drowsiness measures had been classified, it was possible to classify the
corresponding data point for each velocity-related measure. Thus within each drowsiness
measure, there were three groups (A, Q. and D) of unequal number that could be compared in
terms of variation of velocity-related measures. The tests that were used to make these
comparisons were one-way parametric ANOVAs and one-way Kruskal-Wallis nonparametric
ANOVAs. The nonparametric tests were used when the assumptions for the parametric tests
were not met (usually lack of homogeneity of variance).

Next, Pearson product-moment correlation coefficients (r) were calculated to
determine whether or not velocity-related measures were reliable indicators of drowsiness.

First the non-cruise data were divided into task, no task, and all non-cruise data. Pearson r
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values were then found between the variation of each velocity-related measure and the
magnitude of each drowsiness measure for the three different groups. The r values were then
compared and tested for significance between groups.

Thirdly, 2 X 2 X 6 analyses of variance were conducted to examine the effects and
interactions of cruise control, secondary task, and time interval on drowsiness and lane
keeping. To examine these effects on drowsiness, the five definitional measures AVEOBS,
EYEMEAS, NEWDEF, PERCLOS, and, MASTER were used as dependent measures.
Similarly, to examine the effects of cruise and A/O task on lane keeping, the previoudy
described lane related measures LANDEV, LNMNSQ, LANEX, and LNERRSQ were used
as dependent measures.

The final set of analyses was used to examine whether or not velocity-related
measures would improve drowsiness detection algorithms. Two cases of multiple regression
analyses were used for this purpose. In case 1, multiple regression was used to develop
algorithms without the inclusion of velocity-related measures. In case 2, velocity-related
measures were included with the other measures to develop detection agorithms. Multiple
correlation coefficients and apparent accuracy rates of the different cases were compared for

each velocity measure and each drowsiness measure.
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RESULTS
Unequal ' Analyses

Both parametric and Kruska-Wallis nonparametric ANOVAs were run. Before
conducting either test, the data for the groups “ Awake’ , “ Questionable’, and “ Drowsy” were
examined for normality and homogeneity of variance using both Levene' s test and the
Hartley F-Max test. If results from either of these tests exhibited heterogeneity of variance, a
plot of means and standard deviations was examined for high correlation. Based on the
findings of these analyses, a parametric test, nonparametric test, or both (if the tests of
assumptions were inconclusive) were run to differentiate between the groups. The
summarized results can be seen in Kim, Wreggit, and Wierwille (1994).

Regardless of the type of test used (parametric or nonparametric), the results followed
adistinct pattern. For the data set in which subjects completed the secondary A/O task, there
were only two significant differences (a = 0.05) between groups out of a possible 15 (five
drowsiness measures across the three velocity-related measures). More specifically, there
were two times that forward acceleration (FACCSD) differed between the “ Awake’,

“ Questionable”’, and “ Drowsy” groups. No significant differences between the groups were
found in either forward velocity (FVELSD) or pedal deviations (PEDDEV) under the task
condition.

In contrast, under the no task condition (which refersto the absence of the A/O task),
significance (a = 0.05) between groups was seen in 14 out of the 15 possible cases. For
PEDDEV and FVEL SD, there was a significant difference between at least two groups in all
cases. As for FACCSD, there was a significant difference in forward acceleration between at
least two groups for four out of five cases.

When al non-cruise data were examined as a whole data set, there was also a large
domain of significance found between groups. Once again, at least two groups differed
significantly in every case with regard to FVELSD and PEDDEV. With FACCSD,

parametric and nonparametric tests tended to give different results. Nonparametric tests
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exhibited significance in four cases. However, parametric tests failed to show significance
between any groupsat a = 0.05.
rrelation An

Pearson product-moment correlation (r) values were found between each velocity-
related measure and each drowsiness measure. Similar to the previous anayses, these
correlations were computed for task condition data, no task condition data, and combined
data separately and compared. Table 19 is a summary of the results.

Using Fisher’s Z transformations, it was possible to test for significant differences
between the groups. As one can aso see from Table 19, the correlations in the no-task
condition were significantly higher than the task grouping, combined grouping, or both in 13
out of 15 cases. In al cases within the no task group, correlations between drowsiness

measure and velocity-related measure were moderately high, whereas in the task group
correlations between drowsiness measure and vel ocity-related measure were weak in all cases
but one. The correlations found with the combined data were mostly weak.

To further compare the groups, regression lines plotted for each group’s d& a can be
seen in Figure 27. The figure shows results obtained for PERCLOS versus FVELSD and is
typical of the other plots.

Analyses of Variance

Table 20 contains a summary of the results of the 2 X 2 X 6 ANOVASs that were run
to test the main effects and interactions of cruise control, secondary task, and time interval on
drowsiness and lane keeping. As mentioned previoudly, there were two levels of cruise
control (engaged and disengaged), there were two levels of secondary task (present and
absent) and there were six levels of time interval (six six-minute intervals within each
condition).

Five separate dependent measures were used as measures of drowsiness: AVEOBS,
EYEMEAS, NEWDEF, PERCLOS, and MASTER. There were no main effects for either

cruise or task for any drowsiness measure. In addition, no two- or three-way interactions
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Table 19: Summary Table of Correlation Analyses

Pearson product-moment correlation coefficients (r) for drowsiness measure and longitudinal
speed variation (FVELSD) with associated test of significance as a function of A/O task, no
task, or combined data conditions.

Drowsiness M easure A/O Task No Task Combined Data
AVEOBS 0.3458 0.6174 0.441
EYEMEAS 0.1988 0.606" 0.3478
NEWDEF 0.1298 0.617* 0.3108
PERCLOS 0.1478 0.638* 0.3278
MASTER 0.223 § 0.666* 0.3878

Pearson product-moment correlation coefficients (r) for drowsiness measure and longitudinal
acceleration standard deviation (FACCSD) with associated test of significance as a function
of A/O task, no task, or combined data conditions.

Drowsiness Measure A/O Task No Task Combined Data
AVEOBS 0.145 0.445 0.203 .
EYEMEAS 0.0408 0.485* 0.1428
NEWDEF 0.0538 0.529* 0.1618
PERCLOS 0.0868 0.506* 0.1778
MASTER 0.0888 0.527* 0.1858

Pearson product-moment correlation coefficients (r) for drowsiness measure and accel erator
pedal deviation (PEDDEV) with associated test of significance as a function of A/O task, no
task, or combined data conditions.

Drowsiness M easure A/O Task No Task Combined Data
AVEOBS 0.406 0.513 0.443
EYEMEAS 0.2188 0.578V 0.380
NEWDEF 0.1318 0.562V 0.331
PERCLOS 0.1438 0.589/ 0.356
MASTER 0.2418 0.601/ 0.410

* r vaue differs significantly from all other r values for a given drows ness measure (row)
§ r value differs significantly from r value under “No Task™ condition for a given drowsiness measure (row)

Vrvalue differs significantly from r value under “A/O Task’ condition for a given drowsiness measure (row)
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" FVELSD vs. PERCLOS
PERCLOS = 0.014 + 0.031 * FVELSD
Combined Data Correiation: r= 0.327
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Figure 27: Comparison of Regression Lines for (a) Combined, (b) A/O Task, and (c) No
Task Data
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Table 20: Summary Table of ANOVA Results

summary table of p-values of main effects for
2 (A/O Task) x 2 (Cruise Control) x 6 (Interval) ANOVAS

Drowsiness M easure A/O Task Cruise Control Interval
AVEOBS 0.693 0.520 1.14 E-13*
EYEMEAS 0.847 0.098 6.99 E-7*
NEWDEF 0.874 0.114 4.79 E-6*
PERCLOS 0.182 0.084 0.049*
MASTER 0.325 0.103 0.026*

Performance Measure A/O Task CruiseControl Interval
LANDEV 0.270 0.327 0.005*
LANEX 0.507 0.220 3.82 E-5*
LNERRSQ 0.192 0.376 0.204
LNMNSQ 0.197 0.385 0.310

Note: No interaction was significant (a = 0.05)

* dgnificant (a = 0.05)
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were found to be significant. However, asignificant main effect (a = 0.05) of time interval
was found in every case. A significant increase in drowsiness-measure values between levels
of time interval was seen.

Dependent measures for lane keeping included LANDEV, LNMNSQ, LANEX, and
LNERRSQ. Results were similar to measures of drowsiness in that there were no main
effects found for either cruise control or secondary task conditions. Likewise, no significant
two- or three-way interactions were found. However, there was a significant main effect
increase (a = 0.05) of both LANDEV and LANEX lateral performance measures over time
interval.

Multiple Regression

Multiple regression analyses were run to examine whether or not velocity-related
measures could contribute to drowsiness detection algorithms. Tables 2 1, 22, and 23 are
summaries of the results for the individual velocity-related measures (FVELSD, FACCSD,
and PEDDEV). Table 24 is a summary of the results when al velocity-related measures
were included together in the algorithm development. As mentioned previously, algorithms
were developed in two different cases in order to evaluate the predictive strength of the
velocity-related measures. The following is a brief description of the procedures that were
used for generating the results found in Tables 21, 22, 23, and 24.

On the left half of each table, agorithms for both Case 1 and Case 2 were developed
using the accelerometer and steering measures that were defined previoudy. In Case 1, these
measures alone were used for agorithm development. Using each drowsiness measure as a
separate dependent variable, backwards stepwise regression and a re-substitution process
were conducted. The algorithm was developed when all remaining independent measures
were significant.

In Case 2, velocity-related measures were added to the accelerometer and steering

measures for agorithm development. Once again backwards stepwise regression and re-
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Table 21: Summary Table of Multiple Regression Analyses Results Showing R Vaues for

Forward Ve ocity Standard Deviation (FVELSD)

Steering and Accel.

Steering, Accel., and Lane

Measures M easures

Cael | Case2 Casel Case 2

AVEOBS 0.799 0.799* 0.845 0.845*

EYEMEAS 0.862 0.862* 0.892 0.892*

NEWDEF 0.834 0.834* 0851 0.866.
FVELSD

PERCLOS 0.871 0.876 0.911 . 0.923
FVELSD FVELSD

MASTER 0.897 0.897* 0931 0.931*

* Algorithm same as Case 1 (FVELSD provided no improvement and was del eted)

FVELSD -- boldface indicates that FVEL SD contributed to significant increase in
algorithm R value
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Table22: Summary Table of Multiple Regression Anayses Results Showing R Vaues for

Forward Acceleration Standard Deviation (FACCSD)

Steering and Accel.

Steering, Accel., and Lane

Measures Measures
Case1l Cae?2 Case1l Cae?

AVEOBS 0.799 0.799* 0.845 0.845*

EYEMEAS 0.862 0.862* 0.892 0.892*

NEWDEF 0.834 0.834* 0.851 0.868
FACCSD

PERCLOS 0.871 0.871* 0.911 0.927
FACCSD

MASTER 0.897 0.897* 0931 0.933
FACCSD

* Algorithm same as Case 1(FACCSD provided no improvement and was deleted)

FACCSD -- boldface indicates that FACCSD contributed to significant increase in algorithm

R value
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Table 23: Summary Table of Multiple Regression Analyses Results Showing R Values for

Accelerator Pedal Movement Standard Deviation (PEDDEV)

Steering and Accdl.

Steering, Accel., and Lane

Measures Measures
Casel Case 2 Casel Case 2
AVEOBS 0.799 0.799 0.845 0.844*
EYEMEAS 0.862 0.862* 0.892 0.892*
NEWDEF 0.834 0.840 0.851 0.859
PEDDEV PEDDEV
PERCLOS 0.871 0.880 0.911 0.915
PEDDEV PEDDEV
MASTER 0.897 0.897* 0.931 0.931*

* Algorithm same as Case 1 (PEDDEV provided no improvement and was del eted)

PEDDEV -- boldface indicates that PEDDEV contributed to significant increase in
algorithm R value
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Table24: Summary Table of Multiple Regression Analyses Results Showing R Values for

All Velocity-Related Measures (FVELSD, FACCSD, and PEDDEYV)

Steering and Accel. Steering, Accel., and Lane
Measures Measures
Case 1 Case 2 Case 1 Case 2
FVELSD
AVEOBS 0.799 0.820 0.845 0.845%
FACCSD
EYEMEAS 0.862 0.862* 0.892 0.892*
NEWDEF 0.834 0.840 0.851 0.868
PEDDEV FACCSD
PERCLOS 0.871 0.880 0.911 0.927
PEDDEV FACCSD
MASTER 0.897 0.897* 0931 0.933
FACCSD

* Algorithm same as Case 1 (None of the longitudinal measures improved algorithm
accuracy- All were deleted)

FVELSD -- boldface indicates that FVELSD contributed to significant increase in
algorithm R value

FACCSD -- boldface indicates that FACCSD contributed to significant increase in
algorithm R value

PEDDEV -- boldface indicates that PEDDEV contributed to significant increase in
algorithm R value

Multiple longitudinal measures listed in the table indicate that the combination of measures

contributed significantly to algorithm R value
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substitution were used. Those cases in which the velocity-related measures remained
significant and contributed to the algorithm are listed in bold print in the tables.

For the right half of each table, lane-related measures were added to the independent
measures for both cases, The definitions for these measures can aso be found in the
Experimental Design section. The procedures for developing the agorithms for Case 1 and
Case 2 are identical to those used for the left half of the chart (velocity-related measures
added in Case 2 only).

Velocity-related measures, added individualy, contributed to 10 out of 30 drowsiness
detection algorithms. The amounts contributed ranged from 0.002 to 0.017. When all three
velocity-related measures were used in the regression, one out of ten algorithms was
improved by 0.02 1.

To better understand the additional predictive strength of the velocity-related
measures, classification matrices of the Case 1 and Case 2 algorithms were constructed.
These can be seen with the associated algorithms for PERCLOS in Figures 28, 29, and 30.
See Kirn, Wreggit, and Wierwille for a complete set of APARSs and agorithm results. These
matrices represent data that have been classified as * Awake, “ Questionable”, or “ Drowsy” as
was done previoudly for the unequal n’s analyses. The bolded numbers in the classification
matrices have been classified correctly. The cells with bolded borders contain the number of

large misclassifications.
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Steering, Accelerometer, and Selected Lane Measures - Case 1 (Algorithm developed without FVELSD)
Regression Summary foi Dependent Variable PERCLOS
R = 0.91122539 R2 = 0.83033171 AdjustedR2 = 0.82418431 F(5. 138) = 135.07 p < 0.0000 Std. error of estimate: 0.02996

St. Emr. of St. Emr
Beta Beta B of B t(138) p-level
Intercept -0.00455 0.00330 -1.380 0.1698
INTACDEV -0.2149 0.0373 -0.09539 0.01655 -5.763 0.0000
LANDEV 0.5768 0.0812 0.03680 0.00518 7.104 0.0000
LANEX 0.2062 0.0903 0.13398 0.05869 2.283 0.0240
LGREV 0.3921 0.0942 0.01547 0.00372 4.161 0.0001
STEXED -0.3238 0.0620 -29.59937 5.66390 -5.226 0.0000
Predicted
Group % Correct Awake Questionable Drowsy
Awake 95.20 119 5 1
Observed Questionable 37.50 4 3 1
Drowsy 81.82 1 1 9
Total 90.97 124 9 11

PERCLOS (R Vaue = 0.911)
Apparent Accuracy Rate (large misclassifications): 0.986
ApparentAccuracyRate(allmisclassifications):  0.910

Steering, Accelerometer, and Selected Lane Measures - Case 2 (Algorithm developed with FVELSD)
Regression Summary for Dependent Variable: PERCLOS
R = 0.92265664 R2 = 0.85129528 Adjusted R2 = 0.84364136 F(7.136) = 111.22 p < 0.0000 Std. error of estimate: 0.02826

St. Err. of St. Err
Beta Beta B of B t(138) p-level
Intercept 0.01113 0.00351 3.174 0.0019
INTACDEV -0.2084 0.0356 -0.09250 0.01580 -5.856 0.0000
FVELSD -0.2363 0.0411 -0.02260 0.00393 -5.757 0.0000
LANVAR 1.1831 02118 0.00878 0.00157 5.586 0.0000
LANEX 0.2922 0.0813 0.18989 0.05281 3.596 0.0005
LNERRSQ -0 7567 0.2233 -0.00602 0.00178 -3.389 0.0009
LGREV 0.4658 0.0928 0.01838 0.00366 5.017 0.0000
STEXED -0.1961 0.0911 -17.92416 8.33013 -2.152 0.0332
Predicted
Group % Correct Awake Questionable Drowsy
Awake 95.20 119 6 0
Observed Questionable 37.50 4 3 1
Drowsy 81.82 1 1 9
Total 9097 124 10 10
PERCLOS (R Vaue = 0.923)
Apparent Accuracy Rate (large misclassifications): 0.993
ApparentAccuracyRate(allmisclassifications):  0.910 .

Figure 28: Case 1 and Case 2 Algorithm Comparison -- Multiple Regression Results
(Independent Variables Included Steering, Accelerometer, and Lane Measures.
FVELSD Included in Case 2 Only.)
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Steering, Accelerometer, and Selected Lane Measures - Case 1 (Algorithm developed without FACCSD)
Regression Summary for Dependent Variable: PERCLOS
R =091122539 R%=0.83033171 Adjusted R2 =0.82418431 F(5, 138) = 135.07 p <0.0000 Std. error of estimate: 0.02996

St. Err. of St Emr
Beta Beta B of B 1(138) p-level
Intercept . -0.00455 0.00330 -1.380 0.1698
INTACDEV -0.2149 0.0373 -0.09539 0.01655 -5.763 0.0000
LANDEV 0.5768 0.0812 0.03680 0.00518 7.104 0.0000
LANEX 0.2062 0.0903 0.13398 0.05869 2.283 0.0240
LGREV 0.3921 0.0942 0.01547 0.00372 4.161 0.0001
STEXED -0.3238 0.0620 -29.59937 5.66390 -5.226 0.0000
Predicted
Group % Correct Awake Questionable Drowsy
Awake 95.20 119 5 ]
Observed Questionable 37.50 4 3 I
Drowsy 81.82 I 1 9
Total 90.97 124 9 11

PERCLOS (R Value = 0.911)
Apparent Accuracy Rate (large misclassifications): 0.986
Apparent Accuracy Rate (all misclassifications):  0.910

Steering, Accelerometer, and Selected Lane Measures - Case 2 (Algorithm developed with FACCSD)
Regression Summary for Dependent Variable: PERCLOS
R =0.92738791 R? = 0.86004834 Adjusted R2 =0.85284495 F(7.136)=119.39 p < 0.0000 Std. error of estimate: 0.02741

St. Err. of St Emr
Beta Beta B of B t(138) p-level
Intercept 0.00680 0.00307 2.215 0.0284
INTACDEV -0.1932 0.0347 -0.08575 0.01540 -5.569 0.0000
FACCSD -0.2540 0.0334 -0.14261 0.02157 - -6.612 0.0000
LANVAR 1.2794 0.2078 0.00950 0.00154 6.157 0.0000
LANEX 0.2860 0.0789 0.18588 0.05125 3.627 0.0004
LNERRSQ -0.7088 0.2152 -0.00564 0.00171 -3.293 0.0013
LGREV 0.3213 0.0904 0.01268 0.00357 3.555 0.0005
STEXED -0.2219 0.0881 -20.28603 8.04976 -2.520 0.0129
Predicted

Group % Correct Awake Questionable Drowsy

Awake 96.00 120 5 0
Observed Questionable 37.50 4 3 1

Drowsy 81.82 1 1 9

Total 91.67 125 9 10

PERCLOS (R Value = 0.927)
Apparent Accuracy Rate (largemisclassifications): 0.993
ApparentAccuracyRate(allmisclassifications):  0.917

Figure 29: Case 1 and Case 2 Algorithm Comparison -- Multiple Regression Results
(Independent Variables Included Steering, Accelerometer, and Lane Measures.
FACCSD Included in Case 2 Only.)
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Steering, Accelerometer, and Selected Lane Measures - Case 1(Algorithm developed without PEDDEV)
Regression Summary for Dependent Varisble PERCLOS
R= 0.91122539 R2 = 0.83033171 Adjusted R2 = 0.82418431 F(5. 138) = 135.07 p < 0.0000 Std. error ofestimate: 0.02996

St. Err. of St. Emr
Beta Beta B of B 1(138) p-level
Intercept -0.00455 0.00330 -1.380 0.1698
INTACDEV -0.2149 0.0373 -0.09539 0.01655 -5.763 0.0000
LANDEV 0.5768 0.0812 0.03680 0.00518 7.104 0.0000
LANEX 0.2062 0.0903 0.13398 0.05869 2283 0.0240
LGREV 0.3921 0.0942 0.01547 0.00372 4.161 0.0001
STEXED -0.3238 0.0620 -29.59937 5.66390 -5.226 0.0000
Predicted
Group % Correct Awake Questionable Drowsy
Awake 95.20 19 5 1
Observed Questionable 37.50 4 3 I
Drowsy 81.82 1 1 9
Total 90.97 124 9 il

PERCLOS (R Value = 0.911)
Apparent Accuracy Rate (large misclassifications): 0.986
ApparentAccuracyRate(almisclassifications):  0.910

Steering, Accelerometer, and Selected Lane Measures - Case 2 (Algorithm developed with PEDDEV)
Regression Summary for Dependent Variable: PERCLOS
R = 092738791 R2 = 0.86004834 Adjusted R2 = 0.85284495 F(7. 136) = 119.39 p < 0.0000 Std. error of estimate: 0.02741

St Err. of St Err
Beta Beta B of B t(138) p-leve
Interceot 0.00309 0.00442 0.699 0.4854
INTACDEV -0.2195 0.0366 -0.09742 0.01625 -5.994 0.0000
LANDEV 0.5296 0.0818 0.03379 0.00522 6.477 0.0000
LANEX 0.2331 0.0892 0.15151 0.05798 2.613 0.0100
PEDDEV -0.1215 0.0478 -0.00527 0.00207 -2.542 0.0121
LGREV 0.4474 0.0950 0.01765 0.00375 4711 0.0000
STEXED -0.2744 0.0638 -25.08181 5.83238 -4.300 0.0000
Predicted
Group % Correct Awake Questionable Drowsy
Awake 95.20 119 5 I
Observed Questionabie 37.50 4 3 1
Drowsy 81.82 i I 9
Total 90.97 124 9 i1

PERCLOS (R Value = 0.915)
Apparent Accuracy Rate (largemisclassifications): 0.936
Apparent Accuracy Rate(dl misclassifications): 0.910

Figure 30: Casel and Case 2 Algorithm Comparison -- Multiple Regression Results
(Independent Variables Included Steering, Accelerometer, and Lane Measures.
PEDDEV Included in Case 2 Only.)
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DISCUSSION

In general, velocity-related measures were found to be moderately good indicators
and predictors of drowsiness under certain conditions. Under the “no task” condition,
unequal n’s analyses and correlation analyses showed promising results. In addition, all three
velocity-related measures contributed slightly to the predictive power of multiple regression
algorithms. Analysis of variance results showed no main effect for either cruise control or
secondary task on drowsiness or lane-keeping. However, the ANOVAs did show amain

. effect for time interval.
Speed Variability vs. Drowsiness

Unequal n’s analyses suggested that speed variability increased with drowsiness when
no secondary task was present. In every case, speed variability was greater among data
classified as “drowsy” than data classified as “awake’ for the no task condition. The results
of further analyses showed that the same holds true for forward acceleration variability and
accelerator pedal movement variability.

Similarly, when the task condition and the no task condition are combined to form
all non-cruise data, speed variability, forward acceleration, and accelerator pedal
movement are significantly different between the “ Drowsy” and “ Awake’ data sets in most
cases. However, when only the task condition data is examined, there are no significant
differences between “ Drowsy” and “ Awake’ datafor either speed variability or pedal
movement.

In summary, when driver-subjects are not given a secondary task, the variability for
al velocity-related measures increase with drowsiness. When subjects are given a task, very
little variability is seen in speed, acceleration, or pedal movement. The results suggest that
the secondary task may have kept subjects more stimulated and thus helped them monitor
and control their speed. In the conditions in which the secondary task is absent, it was
possible that subjects become under loaded and lost their ability to concentrate on speed

maintenance.
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Vdocity-Related Measures as Indicators of Drowsiness

A strong positive correlation between drowsiness and velocity-related measures was
not established for the entire sample. However, the data from the no-task condition showed
moderately high positive correlations with means of 0.629 for speed variation, 0.498 for
acceleration, and 0.569 for pedal movement, Correlations for the task condition were weak.

As with the previous analyses, velocity-related measures proved to be more promising
in the no-task condition. An increase in drowsiness was moderately associated with an
increase in speed variation only when a secondary task was not presented.

From these data one can conclude that, in general, velocity-related measures are fairly

weak indicators of drowsiness. However, when subjects are not responding to atask,

velocity-related measures are moderately strong indicators of drowsiness,

Five 2 X 2 X 6 ANOVAswererun to examine the effects and interactions of cruise
control, secondary A/O task, and time interval on drowsiness. One ANOVA was run for
each drowsiness measure. Time interval was found to have the only significant main effect
on drowsiness. No two- or three-way interactions were found to be significant.

These findings were somewhat surprising since the secondary A/O task seemed to
have a large effect on speed maintenance ability. However, the previous analyses utilized
only half of the gathered data (non-cruise control). Analysis of al the data showed that for
most subjects, drowsiness level varied greatly. Although the mean drowsiness level was
higher in the no-task condition than in the task condition, there was a great deal of variance.
Therefore, drowsiness level in the no-task condition was not significantly higher than the
drowsiness level in the task condition. This same trend occurred with the cruise control
factor. Although the mean value for most drowsiness measures was higher in the cruise
control conditions, no significant effect (a = 0.05) was found due to large variance of

drowsiness in the cruise control condition.
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In terms of lane-keeping, the results offer smilar suggestions. From the ANOVAs, it
appears that time interval was the only factor significantly affecting drivers drowsiness.

Drivers abilities to stay within lane boundaries did not seem to be significantly affected by

the presence or absence of secondary task or cruise control.

\V4 ity-R M I

The potential gains from velocity-related measures are quite modest. For the
agorithms that were improved by one or more velocity measures, the average gain in
correlation was only 0.010. Examination of classification matrices revealed very small
improvement in accuracy for the algorithms to which they contributed.

In most cases, velocity-related measures did not contribute to detection accuracy.

However, the installation of these measures is both unobtrusive and not overly complex.
Ultimately, it is a tradeoff of costs and benefits as to whether very small improvementsin

detection accuracy justify the added cost.
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CONCLUSIONS

This experiment helped to shed light upon questions related to velocity-rel ated
performance measures, cruise control, and auditory secondary tasks as they apply to
drowsiness and driving. With regard to velocity-related measures, drivers seemed to vary
their speed when they became quite drowsy. This can be seen best when drivers are not
performing a secondary task and are possibly under loaded. However, velocity-related
measures were not found to be good indicators of drowsiness. It islikely that speed variance
while drivers are alert was too similar to variance of speed while drivers were drowsy to be a
reliable indicator of drowsiness. However, velocity-related measures became much better
indicators when drivers were exposed to the no-task condition in comparison to task
conditions.

This research suggests that improvements in detection algorithms from the addition of
velocity-related measures will be modest at best . This is not to say that velocity-related
measures cannot be very strong predictors at times, but overall these performance measures
add only small amounts of predictive information.

With regard to the secondary task. the findings from this study suggest that future
research is required. Although driver drowsiness does not appear to be affected by the
presence of a secondary task, drivers ability to maintain speed isimproved by the presence of
a secondary task. The lack of a secondary task or other stimulation does not induce
drowsiness, but it may help induce inattention. Perhaps the presence of a nonstressful

secondary task would help keep driver attention from waning.
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Chapter Seven
Part One: Further Algorithm Refinement and Investigation - Effects of Using Higher
Order Algorithmson Drowsy Driver Detection Accuracy
(Work reported in this part of Chapter Seven has not appeared in previous
semiannual research reports. This work was carried out by Rollin J. Fairbanks

and Walter W. Wierwille. It is referred to as Fairbanks and Wierwille, 1994)
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INTRODUCTION

This study focused on the effects of using higher-order (non-linear) algorithms on
drowsy-driver detection accuracy. Measures from the development phase (Wreggit, Kirn,
and Wierwille, 1993) and validation phase (Wreggit, Kirn, and Wierwille, 1994) were
sguared or multiplied with each other to obtain cross products. The second order terms,
combined with first order terms, were used to calculate predictive agorithms using data from
the development phase. The developed algorithms were then applied to the validation data.

The main purpose of this follow-up study was to examine the potentia for
improvement in algorithm accuracy with the addition of second order terms to the
drowsiness-detection algorithms. Three groups of independent measures were selected from
the development phase (Chapter 4) data and used to estimate the dependent measure
“PERCLOS.” Multiple regression analyses were performed using linear (first order) terms
only, linear and cross product (first order and partial second order) terms, and all first and
second order (full second order) terms from each of the three groups of independent
measures. The nine algorithms developed from this process were applied to the data
collected during validation phase (Chapter 5) of the main study. The accuracy of each type
of algorithm (linear, cross product, or full second order) was determined by examining
multiple regression Pearson-product-moment correlation (R) values as well as by
classification matrices.

Although not conclusively proven by the present study, the results do support the
hypothesis that higher-order algorithms produce more and larger outliers when applied to
new data than do linear algorithms. The experimenters involved with this study were
interested in quantifying the effects of the prediction outliers on classification accuracy,
therefore prediction outliers were limited to the maximum and minimum scores of the
observed data. Subsequently, a comparison of classification accuracy was conducted

between data with outliers present and data with no outliers.
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METHOD

Data collected during the main study were selected to be re-analyzed. The selected
data included independent and dependent measures from all subjects in both phases of the
main study.

Three groups of independent measures were selected from those used in phase 11 of
the driver drowsiness main study. There were several categories of measures used in phase 11
which included seat movement, steering, accelerometer, lane, heading, and subsidiary (A/O)
task-related measures, as well as brain wave activity and heart rate measures. These
measures are described in detail in the algorithm development report (Wreggit, Kirn, and
Wierwille, 1993). Three groups of independent measures employed in this study included
variables most often appearing in the previously developed algorithms. The names of the
selected variables used for the present study and their descriptions are as follow (Wreggit,

Kim, and Wierwille, 1993):

Steering-related measures:

. NMRHOLD: Thenumber of timesthe hold circuit output on the steering wheel
exceeded a threshold value (corresponding to holding the steering
wheel still for 0.4 second or longer).

. THRSHLD:  The proportion of total time that the hold circuit on the steering wheel

exceeded athreshold value.
. STVELV: The variance of steering velocity.
. LGREV: The number of times that steering excursions exceeded 15 degrees

after steering velocity passed through zero.
MDREV: The number of times that steering excursions exceeded 5 degrees (but
less than 15 degrees) after steering velocity passed through zero.
SMIREV: The number of times that steering excursions exceeded 1 degree (but

less than 5 degrees) after steering velocity passed through zero.

167



e STEXED: . The proportion of time that steering velocity exceeded 150 degrees per

second.

Accelerometer-related measure:

e INTACDEV: The standard deviation of the lateral velocity of the vehicle. (This
signal was obtained by passing the smoothed accelerometer signal
through an additional low pass filter (leaking integrator) with a comer

frequency of 0.004 Hz.)

Lane-related measures: ,

. LANDEV: The standard deviation of lateral position relative to the lane.

. LNRTDEV: The standard deviation of the time derivative of lane position.

. LANEX: The proportion of time that any part of the vehicle exceeded alane
boundary.

. LNERRSQ: The mean square of the difference between the outside edge of the
vehicle and the lane edge when the vehicle exceeded the lane. When
the vehicle did not exceed the lane, the contribution to the measure
was zero.

The definitional measure of drowsiness, PERCLOS, was selected to be used as the
dependent measure. PERCLOS is defined as the proportion of time that the eyes of a
driver/subject are closed 80% or more. This measure was collected during both phases of the
main study. Although five definitional measures were used as dependent measures in
algorithm development and validation phases, PERCL OS was chosen as the dependent.
measure for this study for the following reasons:
¢ Itisdesirableto use only one definitional measure to ensure control across conditions,

thus allowing reliable comparisons between the various non linear and linear agorithms.

168



e PERCLOS s typical of the definitional measures and is one of the most likely to be used
in implementation.

o Itwasfound in phaselll of the main study that PERCLOS was one of the most reliable
definitional measures between subjects (Wreggit, Kim, and Wierwille, 1993).

The data representing these independent variables from the twelve subjects of phase 11
of the main study were divided into three variable groups as illustrated in Table 25. The data
from each group were then used to develop predictive algorithms using PERCLOS as the
dependent variable.

Each group of variables was expanded to include linear terms (X, Y, Z, etc.), cross
product terms (XY, XZ, YZ, etc.), and squared terms (X2, Y2, Z2, etc.). These variables were
divided into three subgroups with designations LIN, LINCROSS, and FULL, described as
follow: ,

1. Subgroup LIN includes linear terms only,

2. Subgroup LINCROSS includes linear terms and cross product terms, and

3. Subgroup FULL includes linear terms, cross product terms, and squared terms.
DaaAnaysis

Backwards stepwise multiple regression and re-substitution were performed on each
of the nine subgroups of collected data to find optimized combinations of variables that
would best predict the values of PERCLOS. Pearson-product-moment correlation (R)
analysis and classification matrices were used to analyze the results of these algorithms.
Although the use of discriminant analysis was considered, it had been shown that this
technigque results in negligible gain over the results of multiple regression (Wreggit, Kim and
Wierwille, 1993). Therefore, discriminant analysis was not used.

Multiple regression, In each multiple regression analysis the B weights of the various
measures were first examined. Pairs of measures that were linearly related would exhibit

large offsetting B coefficients. One member of the pair was then removed. Theresfter, the
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Table25: Summary of Variable Groups Used in Algorithm Development.

VARIABLE GROUP 1

(Used for regressions to develop algorithms: 1-LIN, 1-LINCROSS, and 1 -FULL)

Dependent Variable: PERCLOS

Independent Variables:

A- STVELV
B- LGREV
C - MDREV
D- SMREV
E- STEXED
F- NMRHOLD
G- THRSHLD

(steering-related measure)
(steering-related measure)
(steering-related measure)
(steering-related measure)
(steering-related measure)
(steering-related measure)
(steering-related measure)

VARIABLE GROUP 2

(Used for regressionsto develop algorithms: 2-LIN, 2-LINCROSS, and 2-FULL)

Dependent Variable.. PERCLOS

Independent Variables:

A- LGREV
B- STEXED
C- NMRHOLD
D- THRSHLD
E- INTACDEV
F- LANDEV
G- LINERRSQ

(steering-related measure)
(steering-related measure)
(steering-related measure)
(steering-related measure)
(accelerometer-related measure)
(lane-related measure)
(lane-related measure)

VARIABLE GROUP 3

(Used for regressions to develop algorithms: 3-LIN, 3-LINCROSS, and 3-FULL)

Dependent Variable: PERCLOS

Independent Variables: A

LGREV

B STEXED

C- NMRHOLD
D- THRSHLD
E- MDREV

F- INTACDEV

.G- LANDEV

H- LINERRSQ
- LINRTDEV

J LANEX

(steering-related measure)
(steering-related measure)
(steering-related measure)
(steering-related measure)
(steering-related measure)
(accelerometer-related measure)
(lane-related measure)
(lane-related measure)
(lane-related measure)
(lane-related measure)
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elimination of nonsignificant measures (p > 0.05) began, starting with the measure having the
smallest F-ratio. During each step of this process the Bweights continued to be examined
and correction for linearly related measures was made. Once all remaining independent
measures were found to be significant (p < 0.05), various measures were substituted back into
the set. This backward stepwise/re-substitution approach to multiple regression produced the
final set of results for each subgroup of variables. Once these results were attained, B
weights were used as coefficients for the corresponding independent variable to form
predictive algorithms with respect to PERCLOS.

The stability of these predictive algorithms was examined using data collected during
phase 1l (the validation phase) of the main study. The algorithm outputs (predicted)
PERCLOS were produced and compared to the actual (observed) PERCLOS. Algorithm
accuracy was measured using multiple correlation Pearson-product-moment correlation (R)
values and classification matrices.

R values. The agorithms were re-applied to the data which were used in their
development, and the resulting predicted PERCL OS data were compared to the actual
(observed) PERCLOS data. Algorithm accuracy was measured using Pearson-product-
moment correlation (R) values and correlation matrices.

"Clipped" R values. To minimize the confounding effect of outliers within the
algorithm output data sets output values greater than 0.45 were set equal to 0.45, and those
with values less than zero (0.0) were set equal to zero (0.0). These values are based on the
maximum and minimum values of the actual (observed) PERCLOS data. As was done
previously, algorithm accuracy was measured using multiple correlation Pearson-product-
moment correlation (R) values.

Classification matrices. Asindicated, algorithm accuracy was aso examined using
classification matrices. The threshold levels employed were the same as those used in the

algorithm development phase of the main study (Wreggit, Kim, and Wierwille, 1993). The
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PERCLOS data were classified into three categories of drowsiness (“awake,” “questionable,”

and “drowsy”) according to the following criteria:

Classification PERCLOS Value

Awake PERCLOS < 0.075
Questionable 0.075 < PERCLOS < 0.15
Drowsy PERCLOS > 0.15

Observed (actual) PERCLOS classification data were compared with predicted (algorithm
output) data, and the results were summarized in classification matrices. Misclassifications,
or data sets in which the predicted category did not match the observed category, were
examined and further divided into “large error” misclassifications and “all error”
misclassifications. “Large error” misclassifications were defined as any misclassification in
which the predicted classifications are two categories away from the observed (actual)
classification. To summarize the results of these analyses, Apparent Accuracy Rates
(APARs) were calculated for both “large error” misclassifications and “all”
misclassifications. The APAR for large misclassifications is the proportion of predicted
PERCL OS classifications which are not large errors, and the APAR for al misclassifications
is the proportion of predicted PERCLOS classifications which are correct. Classification
matrix analysis was not conducted using “clipped” agorithm output (predicted) PERCLOS

data since there would have been no differences when compared with unclipped data.
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RESULTS

In total, nine algorithms were developed in this study. These algorithms were derived
from three separate groups of variables which were each expanded to subgroups of linear
(LIN) terms only, linear and cross product (LINCROSS) terms, and al first and second order
(FULL) termsfrom each of the three groups of independent measures. These agorithms
were applied to the original (development) data set and to the new (validation) data set from
the main study. The results from these data sets were analyzed using Pearson-product-
moment correlation (R) values and classification matrices as described earlier.

ltinl :

Table 26 contains an example of typical results obtained from multiple regression
analyses. First order terms are labeled with the appropriate variable name, while second
order terms are signified with letters which correspond to the letter designations noted in
Table 25. R values are shown at the top, B weights (non-standardized) are listed in the fourth
column and were used as coefficients for the corresponding variable for the purpose of
agorithm development. For a complete set of multiple regression tables see Appendix A in
Fairbanks and Wierwille (1994).

Correlation (R) values resulting from analysis of the output PERCL OS data (and
“clipped” output PERCLOS data) versus actual PERCLOS values for each of the nine
agorithms are summarized in Table 27. These results are presented for both the original data
set and validation data to allow comparison. Average values for each type agorithm (linear,

linear/cross product, and full second order) are presented in the lower section of the table.
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Table 26: Multiple Regression Summary for Algorithm 1 -FULL and Dependent Variable

PERCLOS

R=0.86052156 R2= 0.74049735 Adjusted R2=0.72679123
F( 15,284)=54.027 p<0.0000 Std. Error of estimate: 0.05 118

St. Err. St. Err.
BETA |of BETA B of B 1(284) | p-level
Intercept 0.00091 0.006 0.158 0.875
STVELV 1.141 0.152 0.00373 0.000 7.512 0.000
MDREV -0.240 0.068| -0.00548 0.002| -3.513 0.001
SMREV -0.435 0.090] -0.00322 0.001f -4.812 0.000
STEXED -0.386 0.117] -196.48261 '59.592| -3.297 0.001
NMRHOLD -0.299 0.107} -0.00516 0.002{ -2.796 0.006
AxD 0.277 0.088 0.00006 0.000 3.166 0.002
BxE 0.493 0.120f 92.44439 22431 4.121 0.000
CxF 0.236 0.090 0.00061 0.000 2.607 0.010
CxG 0.162 0.078 0.02384 0.012 2.070 0.039
DxG -1.068 0.171y -0.04143 0.007| -6.240 0.000
ExG 0.106 0.050| 444.52088 | 211.382 2.103 0.036
FxG -0.374 0.088| -0.05290 0.012} -4.274 0.000
A-SQUARED| -0.569 0.117)  -0.00002 0.000f -4.851 0.000
D-SQUARED | -0.970 0.222| -0.00025 0.000; -4.380 0.000
F-SQUARED 0.348 0.055 0.00094 0.000 6.294 0.000

* Measures designated by a capital letter are defined in Table 19, Variable Group 1.
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Table 27: Summary of Results

VARIABLE | TERMS USED ACCURACY ORIGINAL VALIDATION
GROUP IN REGRESSION MEASURE TYPE DATA SET DATA SET

VARIABLE Linear Only R Value 0.779 0.791
GROUP 1: (1-LIN) Clipped R Value 0.829
Steering APAR (large errors) 0.983 0.965
lgd:asures APAR (all errors) 0.760 0.747
ly Cross Products R Value o 0.835 0.141
and Linear Clipped R Value 0.739
(1-LINCROSS) APAR (large errors) 0.980 0.955
APAR (all errors) 0.797 0.826
Full 2nd Order R Value 0.860 0.750
(1-FULL) Clipped R Value 0.830
APAR (large errors) 0.983 0.965
APAR (all errors) 0.790 0.823
[VARIABLE Linear Only R Value 0.872 0.863
§GROUP 2: (2-LIN) Clipped R Value 0.862
Steering, APAR (large errors) 0.980 0.979
Accel, APAR (all errors) 0.790 0.830
and Lane Cross Products R Value 0.904 0.402
(small set) and Linear Clipped R Value 0.678
(2-LINCROSS) APAR (large errors) 0.980 0.962
APAR (all errors) 0.807 0.858
Fuli 2nd Order R Value 0.912 0.415
(2-FULL) Clipped R Value 0.701
APAR (large errors) 0.980 0.965
APAR (all errors) 0.810 0.861
VARIABLE Linear Only R Value 0.872 0.863
GROUP 3: (3-LIN) Clipped R Value 0.862
Steering, APAR (large errors) 0.980 0.979
Accel. APAR (all errors) 0.790 0.830
and Lane Cross Products R Value 0.925 0.694
(large set) and Linear Clipped R Value 0.845
(3-LINCROSS) APAR (large errors) 0.993 0.976
APAR (all errors) 0.820 0.872
Full 2nd Order R Value 0.929 0.590
(3-FULL) Clipped R Value 0.853
APAR (large errors) 0.993 0.976
APAR (all errors) 0.840 0.833
AVERAGE Linear Only R Value 0.841 0.83%
VALUES (LIN) Clipped R Value 0.851
APAR (large errors) 0.981 0.974
APAR (alt errors) , 0.780 0.802
Cross Products R Value 0.888 0.412
and Linear Clipped R Value 0.754
(LINCROSS) APAR (large errors) 0.984 0.964
APAR (all errors) 0.808 0.852
Full 2nd Order R Value 0.900 0.585
(FULL) Clipped R Value 0.795
APAR (large errors) 0.985 0.969
APAR (all errors) 0.813 0.839
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[1] . " e V 1
The R vaues resulting from correlation analyses using “clipped” output data were
notably higher than R values resulting from the use of non-clipped data. The average clipped
R value = 0.800 and the average non-clipped R value = 0.6 12 for nine validated agorithms.
The R values used for the averages are in Table 27.
ficat .
All APAR values are summarized in Table 27.

176



DISCUSSION and CONCLUSIONS

R values and APAR values
in comparison of the results from the original and validation data sets (Table 27) suggest that,
in general, al nine algorithms maintained predictive propensity when applied to new data.
Additionally, R values using “clipped” data exhibited an even greater stability between
subjects. It should be noted that APAR values were calculated using “pure” algorithm output
data (“clipped” data were only used in R vaue calculations). In general, al agorithms were
ableto predict appropriate classification of datain 78% to 85% of all cases.

Effect of higher order algorithms on accuracy of prediction Inall cases (variable
groups 1,2, and 3) the inclusion of higher order terms in the multiple regression process did
not increase the predictive abilities of the resulting algorithms. In fact, when applied to new
data for validation, the algorithms which used linear only terms produced higher R valuesin
every case. Although small improvements in average APAR values for all errors occur
between first and second order algorithms applied to original data. thereisno similar
improvement when applied to validation data.

Qutliers. It was found that higher order algorithms may have a greater propensity to
produce outliersthan linear algorithms, when the algorithms were applied to new (validation)
data. This propensity was probably aresult of multiplying measures together that have
moderate statistical instability. Such measures would occasionally exhibit larger derivations,
causing extreme values in algorithm output.

Table 27 shows that clipping (limiting) algorithm output to a feasible range can
produce large increases in R values when higher order agorithms are applied to new data.

For example, in the case of 1 -LINCROSS, the value of R increased from 0.141 to 0.739 when
clipping was applied. The fact that clipping can produce substantial increasesin R values
further supports the hypothesis that higher order models have a greater number and larger

outliers when applied to new data.
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Outliers have less of an effect on classification matrices. The reason for thisis that
once the output of an agorithm exceeds a threshold, it does not matter whether it exceeds the
threshold by a small amount or alarge amount. The classification selected is the same.
Nevertheless, outliers are a symptom of underlying instability. Thus, it could be
hypothesized that the measures devised for drowsy driver detection do not have sufficient
statistical reliability or stability to benefit from algorithms using higher-order terms
Conclusions

The results of this study suggest that the use of second order termsin driver
drowsiness detection algorithms does not result in detection accuracy improvement when the
algorithms are applied. Thisisasurprising result and it underscores the importance of testing
newly derived algorithms on a second set of data (that is, avalidation set). Had this not been
done, it would have been concluded that higher order terms were capable of providing
detection accuracy improvements.

Theresults of this study also do not bode well for even more sophisticated detection
agorithms, such as pattern recognition or neural networks. Since these latter approaches are
actually sophisticated nonlinear optimization procedures, there is a possibility that they
would not provide improvement in detection accuracy (over less sophisticated techniques)
when they are applied to new (validation) data. At the very least, it can be stated, based on
the results of the present study, that al such sophisticated algorithms must be applied to a
second set of data for classification accuracy evauation. Otherwise, when such algorithms
are applied in afield experiment, their detection capabilities may be found wanting and the
reasons may not be fully understood.

Finally, athough not conclusively proven by the present study, the results do support
the hypothesis that higher-order algorithms produce more and larger outliers when applied to

new data than do linear algorithms.
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Chapter Seven
Part Two: Further Algorithm Refinement and Investigation - A Comparison
of R Values Obtained from the Application of Algorithmsto
Original A/O Data, New A/O Data, and New Clipped A/O Data
(Work reported in this part of Chapter Seven has not appeared in previous
semiannual research reports. Thiswork was carried out by Steven S. Wreggit

and Walter W. Wierwille. It isreferred to as Wreggit and Wierwille, 1994a.)
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INTRODUCTION

The purpose of this follow-up study was to examine the possibility of potential
improvement in A/O based algorithm prediction accuracy by confining algorithm output
values to the minimum and maximum values of the observed data. However, it isimportant
to note that there were few outliersin the A/O algorithm output data.

Various A/O task algorithms were devel oped and validated in previous phases of this
study (Wreggit, Kirn, and Wierwille, 1993 and Wreggit, Kirn, and Wierwille, 1994) and it
was found that the R values in the validation phase (using new A/O data) were significantly
lower than the R values obtained in the development phase (using original A/O data). When
the results of the Fairbanks and Wierwille (1994) study became available, it was felt that the
significant decrease in R values from the devel opment phase (using A/O data) to the
validation phase (using A/O data) could be due to the effects of prediction outliers.
Therefore, this supplemental study was undertaken.

The agorithm output values were limited to the minimum and maximum values of
the corresponding observed data. In other words, the outliers were “clipped” from the data
and set to avalue equal to the largest and smallest observed data. Therefore, no outliers were
present when the subsequent correlation analyses wererun. A comparison of R values

obtained from analyses of ariginal data, new data, and “clipped” data were examined.
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METHOD

Data Analysis

Certain algorithm output data and the observed definitional measures that were
collected and cal culated during the validation phase were used in this follow-up study. The
data employed in this study consisted of the algorithm output data from eight previously
developed A/O task algorithms and the four definitional measures of drowsiness.

Algorithm output data were limited to the minimum and maximum values of the
observed data so that no prediction outliers were present in the data set.

Correlations between the al gorithm output (prediction data) and observed datawere
run. The resulting R values were compared with the R values attained during analyses of the

new A/O data.
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RESULTSand CONCLUSIONS
Table 28 shows the R values that were obtained during the analyses of the new data
and new clipped data as well as the original data. The original data were not “clipped” as
were the new (validation) data. It can be seen in Table 28 that the R values resulting from the
new data and new clipped data are practically the same. The average R values for each data
typeisasfollows:
Original: AverageR=0.809
New: Average R =0.606
New Clipped: Average R = 0.608
It can be concluded from the results of this follow-up study that the significant
decrease in A/O task performance based agorithm prediction strength was not due to
prediction outliers. Inspection of the data revealed that the number and magnitude of
prediction outliers was minimal. However, in the previous phase of this study in which
higher-order algorithm outputs were “clipped”, an increase in drowsiness prediction occurred.
It was found by Fairbanks and Wierwille (1994) that higher order algorithms may have a
greater propensity to produce outliers than linear algorithms. This propensity was probably a
result of multiplying measurestogether. Therefore, if linear algorithms are employed thereis

no need to limit the upper and lower values of the prediction data.
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Table 28: R Vaues From Multiple Regression Analyses When Algorithms were Applied to
Original A/O Data, New A/O Data, and New Clipped* A/O Data.

Independent Dependent Measures
Measures
AVEOBS EYEMEAS NEWDEF PERCLOS MASTER
Algorithm I1a | Algorithm12a | Algorithm13a | Algorithm I4a | Algorithm I5a
(original) (original) (original) (original) (original)
0.761 0.768 0.660 0.810 0.822
A/O Task
Measures Only (new) (new) (new) (new) (new)
0.595 0.570 0.422 0.447 0.570
(new clipped) | (new clipped) | (new clipped) | (new clipped) | (new clipped)
0.607 0.572 0.426 0.437 0.574
Algorithm Ja
(original)
A/O Task, 0836 | -
Steering, &
Accelerometer (new)
0.599
(new clipped)
0.595
Algorithm L3a
A/O Task, (original)
LANDEV/VAR, 0875 | -
LNMNSQ,
LANEX, & (new)
LNERRSQ 0.796
(new clipped)
0.595
Algorithm
M3a
A/O Task,
Steering, | e | e | e | e (original)
Accelerometer, 0.936
M | LANDEV/VAR
LNMNSQ, (new)
LANEX, & 0.845
LNERRSQ
(new clipped)
0.849

* Clipped refers to data sets that contained no data greater or less than the maximum values
of the observed data. Thus, any outliers that were present were clipped out of the data set.
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Chapter Seven
Part Three: Further Algorithm Refinement and Investigation - An Investigation of
False Alarm Rates When Applying Detection Algorithmsto Alert-Driver Segments
(Work reported in this part of Chapter Seven has not appeared in previous
semiannual reports. Thiswork was carried out by Steven S. Wreggit and
Walter W. Wierwille. It isreferred to as Wreggit and Wierwille, 1994b.)
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INTRODUCTION

Thefalse darm rate of any warning system must be reasonably low to be practical
and marketable. Usersof awarning system with ahigh false alarm rate would easily become
annoyed and may become habituated to frequent false signals, thusignoring or disbelieving a
true warning of impending driver impairment.

Thisfollow-up study addresses the concern of how well several typical agorithms
perform when driversare aert. The algorithms that were employed in this follow-up study
were based on the definitional measures PERCLOS and AVEOBS. The goal of this study
was to determine the false alarm rate produced by several algorithmsif observed alert data
were used exclusively.

It isimportant to note here that in the algorithm devel opment and validation studies,
the false alarm rates may have been artificially high (compared with an actual on-the-road
situation) since the subject-drivers had been partially sleep deprived. Since very drowsy
subject-drivers were employed, the observed level of aertnesswould have, in many cases,
been very close to the “drowsy threshold” (the level of alertness determined previously that

indicates impairment).
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METHOD
Data Analysis

Certain algorithm output data and the observed definitional measures that were
collected and calculated during the validation phase were used in this follow-up study. The
data employed in this study consisted of the observed data from the definitional measures
PERCLOS and AVEOBS. The previoudly collected defmtional measures contained alert
data segments and drowsy data segments.

Since the purpose of this study was to examine the accuracy of previously developed
algorithms when applied to alert data only, the non-alert segments were deleted. Any
observed PERCL OS data greater than or equal to 0.030 were deleted. Any observed
AVEOBS data greater than or equal to 35.0 were deleted. 1t should be noted here that the
cut-off points employed in this study were different than the thresholds used in the algorithm
development and validation phases. The reason for this difference is that only “very alert”

segments were used in thisfal se alarm rate examination.
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RESULTSand CONCLUSIONS

Table 29 shows three classification matrices and corresponding R values based on
aert data. It can be seen that the R values are quite low while the APARs are very high (in
some cases 1.0). The R values were expected to be low since the data were so tightly
grouped, thus the use of aert segments only did not allow for the detection agorithms to be
exercised to their fullest. In other words, the factor that may have contributed to the
reduction of drowsiness prediction R values was that a very small range of
drowsiness/a ertness was observed,

It can be concluded from these results from the typical algorithms D1 a, D4a, and F4a
that low false alarm rates can be achieved when drowsy-driver detection algorithms are
applied during alert segments exclusively. Thisfinding isimportant since drivers are alert a
majority of thetime. Thevery low false alarm rates achieved in thisfollow-up study are a
significant finding because they represent false alarm rates that would be typical in an aert
driving situation. The false alarm rates during the validation study were slightly higher than
would be typical since the drivers/subjects were partially sleep deprived. Of course, false
alarm rates and classification accuracies in an actual application can be expected to differ
from those presented in this report, because the relative numbers of aert, questionable, and

drowsy epochs for actual driving are unknown.
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Table 29: Classification Matrices with Awake Data Only -- Demonstration of False Al ar m

Rate.
Algorithm #D 1 avs. AVEOBS
Predicted
Group % Correct Awake | Questionable Drowsy
Awake 98.97 96 - 1 0
Observed Questionable N/A 0 0 0
Drowsy N/A 0 0 0
Total 98.97 96 1 0
R Value = 0.157
Apparent Accuracy Rate (large misclassifications): | .0000
Apparent Accuracy Rate (all misclassifications): 0.9897
Algorithm#D4a vs. PERCLOS
Predicted
Group % Correct Awake | Questionable| Drowsy
Awake 86.57 174 23 4
Observed Questionable N/A 0 0 0
Drowsy N/A 0 0 0
Totdl 86.57 174 23 4
R Vaue =0.370
Apparent Accuracy Rate (large misclassifications):  0.980
Apparent Accuracy Rate (all misclassifications): 0.866
Algorithm #F4a vs. PERCLOS
Predicted
Group % Correct Awake | Questionable| drowsy
Awake 94.53 190 11 0
Observed Questionable N/A 0 0 0
drowsy. N/A 0 0
Total 94.53 190 11 0

R Value = 0.499
Apparent Accuracy Rate (large misclassifications):  1.000
Apparent Accuracy Rate (all misclassifications): 0.945
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Chapter Eight

Summary of Findings and Recommendations
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INTRODUCTION

Because numerous investigations were carried out during this three-year study and a
great number of important results were obtained, it was felt beneficial to summarize the most
important findings in one place. Therefore, this chapter providesin brief form the major
findings of theresearch. Any research team undertaking further research on drowsy-driver
detection should examine this summary carefully since not doing so may result in substantial
lost effort.

It should be remembered that al of the results obtained are for research conducted in
avalidated simulator using ordinary young driversin a state of partial sleep deprivation.
These results are believed to be indicative of actua driving under similar on-the-road night
time conditions.

It must be pointed out that the automobile simulator located in the Vehicle Analysis
and Simulation Lab at Virginia Polytechnic Institute and State University does accurately
represent actual driving. In other words, this simulator handles and feels like an actual
automobile. Furthermore, this simulator has been validated so that quantitative values
similar or equal to corresponding full-scale (field-test) results can be obtained. The results of
this research are believed to be accurate due to the realism and validated performance of the

automobile simulator used.
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MAINFINDINGS

Appropriate operational definitions of drowsiness are important components when
developing drowsiness detection algorithms. Four definitions have been evolved and
have been used in thisresearch. (A fifth measure, consisting of the average of the
standardized values of the other four was also used) They need not be obtainablein an
on-the-road setting.
No single measure currently obtainable in an actual automobile is capable of producing
sufficient accuracy to serve as a measure for drowsiness detection. However,
combinations of operational measures are capable of providing reasonably accurate
drowsiness detection. The measures showing the greatest promise as componentsin a
detection system are lane- and heading-related measures, steering-related measures, and
lateral accelerometer-rel ated measures.
The algorithms capable of the greatest detection accuracy have the following general
characteristics:
a  They are composed of four to seven component measures.
b. They werederived from the above cited measure sets.
c. Measureswereinitially obtained over one-minute intervals.
d.  Averaging Six consecutive one-minute-interval measures produces the highest
drowsiness prediction accuracy.
e. Algorithmswere derived by means of multiple linear regression with thresholds
applied subsequently.
Discriminant analysis procedures did not produce better results than multiple regression
followed by thresholding.
Prediction models that included heart-rate measures, in most cases, were not more

accurate at predicting drowsiness than modelsthat did not include heart-rate measures.
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10.

On the whole, it is not worth encumbering the driver with a plethysmograph to obtain
heart-rate measures for the slight improvement in the prediction of drowsiness.

A secondary task seemsto provide an alternative method for the detection of driver
drowsiness, however, asmall loss of accuracy was observed when secondary task based
agorithms were applied to the new set of datain the validation phase.

Therelative predictive strengths of the five definitional measures of drowsinessused in
this study varied somewhat. In general, the most accurate dependent measures were
MASTER and PERCLOS, followed in decreasing order by AVEOBS, EYEMEAS, and
NEWDEF.

Experienced raters were able to produce a good operational measure of drowsiness.
Thiswas accomplished by viewing videotaped images of driver-subjects and rating
each one-minute segment for level of drowsiness. Three raters were employed and
rated independently of one another. The scores from all raters were averaged for each
one-minute segment to create the definitional measure of drowsiness called AVEOBS.
The accuracy of the algorithms that classified levels of drowsiness most accurately are
characterized by thefollowing:

a  Theaverage apparent accuracy rate (APAR) for al errors when devel oped
agorithms were applied to a new set of data and when dual thresholds were used
was approximately 0.829. (This average was calculated using seven valuesin
Table 16).

h. Theaverage APARfor large errors only when developed agorithms were
applied to anew data set and when dual thresholds were used was approximately
0.971 (This average was calculated using seven valuesin Table 16).

Thefirst two minutes of each data set should not be used for data analysis and should
be deleted. This procedure was found to be necessary since many drivers had a
“settling in” time of approximately two minutes. In other words, once the driver-

subjects were placed in the simulator, even after they had experienced alengthy

192



11.

12.

13.

14.

15.

practice run (approximately 10- 15 minutes), it was observed that they still needed
around two minutes to begin driving normally. Inan on-the-road setting drivers would
usualy use thistime for reaching speed and settling into the driving task.

Baselining is desirable when devel oping the data sets for analysis. The process of
baselining was used to account for individual differencesin physiological
characteristics, driving ability, and capability to perform certain tasks. The data used
for the baselining procedure were theinitial ten minutes of data (after the first two
minutes were deleted). These data are averaged and then subtracted from all
subsequent one-minute segments for each driver’s data set. Therefore, baselining was
carried out so that datarelative to the subject’ sinitial data values could be obtained.
When typical algorithms based on driving performance were applied to a new data set
using different subjects driving under similar but not identical conditions, no loss in.
detection accuracy resulted. Both R values and classification matrix accuracies
maintained their values.

The use of twelve representative subjects was sufficient to characterize algorithms for
general use. Care must be taken to ensure that bouts of drowsiness do in fact occur in
several of the drivers. Otherwise, algorithms obtained will not be properly “trained” for
drowsiness detection.

There was a degradation in R values for previously developed algorithms that included
A/O (secondary) task measures, when the algorithms were applied to new data. The
drop in vaue averaged 0.2. However, classification matrices did not exhibit a
correspondingly large decrease in accuracy. Instead, their reduction in accuracy was
small.

The reduction in R values when NO task algorithms were applied to a new set of data
was probably aresult of using only four subjectsto develop the algorithms, or possibly

aresult of the limited number of bouts of drowsinessin the new (validation) data.
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16.

17.

18.

19.

20.

21.

R values for validation results may underestimate the capabilities of algorithmsto
classify correctly, especially when asmall subject sampleisused to develop the
agorithms.

The dullest of driving conditions showed signs of inducing drowsiness. The
combination of barren highway, engaged cruise control, no traffic, and the absence of a
secondary task was found to induce drowsiness most readily and with greatest
frequency.

If drivers who are being monitored by a drowsiness-detection device arein fact alert,
the false alarm rates as presented in Chapters 4 and 5 are generally larger than will
actually be encountered. The false alarm rates generated in these chapters are for
drivers who are partially sleep deprived. However, a follow-up study was conducted
that demonstrated that if the devel oped detection algorithms were applied to only alert
driving segments, alower false alarm rate would result (see Chapter Seven: Part
Three). It should be noted here, however, that “real-world” accuracy rates are likely to
differ from the accuracy rates of the main analyses and follow-up study because the
ratio of alert, questionable, and drowsy epochs of normal driversis unknown.

Higher order detection algorithms (second order in particular) do not provide improved
accuracy when applied to anew data set.

Longitudinal measures do not provide any appreciable improvement in detection
accuracy. Driver speed variation does not provide independent information not already
availablein other measures.

Classification matrices based on certain algorithms resulted in high correct
classification rates (APARs) even though relatively low R values were obtained from
multiple regression analyses. This occurred when A/O task data were used for
agorithm development. During these segments the driver-subjects were more adert.
The good results of the classification matrices suggest that if alert drivers make up the

subject pool adeflation in R values will be seen. Thus, R values should not be relied
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22.

upon solely as an indication of the accuracy of detection algorithm. Further steps must
be taken in the investigation of algorithm accuracy by way of classification matrix
analyses.

When devel oping the algorithms by linear regression methods, extreme care must be
taken with problems of colinearity. The best procedure found to deal with this problem
was to examine statistical output for nearly equal but opposite B coefficients and
eliminate the measure that contributed |east to the prediction accuracy of the algorithm
being developed. Failure to heed this warning will result in prediction algorithms that
appear to possess high predictive accuracy but subsequently show alargedropin

accuracy when applied to anew set of data.
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RECOMMENDATIONS

Efforts are currently being undertaken in a project extension to develop and
implement a drowsy-driver detection system. The first phase focuses on the effectiveness of
various types of on-board warning systems. The purpose of the warning system should be to
dert the driver that he or she is becoming drowsy. The system would also be used as a
means of arousing the driver.

An effective warning must get the attention of adriver even if he or sheis drowsy.
However, warnings for adrowsy-driver detection device must not be so intrusive and
jarring that they startle the driver. Another consideration pertaining to the intrusiveness
of the warning is the degree of driver annoyance. However, the warning must not be so
conservative that it failsto result in the desired effect of alerting or arousing adriver.

The research to be conducted will involve the use of performance algorithmsto
detect an increase in subject-driver drowsiness. The algorithms that will be used are
those developed by Wreggit, Kim, and Wierwille (1993). Once the detection algorithms
have classified a subject-driver as drowsy, awarning will inform the driver that he or she
isexhibiting signs of impaired driver performance. A “full aarm” will activate if the
driver does not manually reset the system.

One of the objectives of the research will be to determine the optimal tone and/or
voice warning to be used for the initial warning. The option to reset the system will give
the driver the opportunity to avoid exposure to the “full alarm”. The action of resetting
the warning may also interrupt adriver’sincreasing drowsiness for at least a short period
of time. When the driver depresses the reset button theinitial warning system will be
disengaged for approximately five minutes.

Another objective of the research isto determine the optimal full-alarm signal to be
used. Auditory displays such as various modul ated tones and rumble strip-like sounds may
be investigated along with steering-column vibration and driver’s seat-vibration. The alarm

will continue to be displayed with increasing intensity until it is manually deactivated by the
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driver. Once the driver has deactivated the alarm the detection algorithms will be disengaged
for approximately five minutes. The driver will then be given the option of selecting
drowsiness countermeasures. Once the multi-stage warning and alerting system described
above has been developed in the automobile simulator there is still aneed for full-scale

implementation and testing of the in-car driver-drowsiness detection and alerting system.

197



REFERENCES
Brown, I. D. (1965). A comparison of two subsidiary tasks used to measure fatigue in car

drivers. Ergonomics, 8, 467-473.
Brown, I. D. (1966). Effects of prolonged driving upon driving skill and performance of a

subsidiary task. Indudtria Medicineand Surgery 35, 760-765.

Brown, I. D., Simmonds, D. C. V., and Tickner, A. H. (1967). Measurement of control
skills, vigilance and performance of asubsidiary task during 12 hours of car driving.
Ergonomics, 10, 665-673.

Carrall, J. S, Blisewise, D. L., and Dement, W. C. (1989). A method for checking
interobserver reliability in observational sleep studies. Sleep, 12(4), 363-367.

Carskadon, M. A. (1980). A_ manual for polysomnography (PSG) technicians. Stanford,
Cdifornia: Stanford University School of Medicine, Department of Psychiatry and
Behavioral Sciences.

Dement, W. C. (1975) Proposals for future Research. In G. Lairy and P. Sdzarulo (Eds.),

plems (pp. 435-443).

New York: Elsevier Scientific Publishing Company.
Dingus, T. A., Hardee, L. H. and Wierwille, W. W. (1985). Detection of drowsv and

Department Report #8402). Vehicle Simulation Laboratory, Human Factors Group.
Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

Dureman, E. |. and Boden, C. (1972). Fatigue in smulated car driving. In Y. Seko (Trans.),
Present technological status of detecting drowsy driving patterns. Jidasha Gijuts1,
30(5), 547-554. Centra Research Institute, Nissan Motor Company.

Ellsworth. L. A., Wreggit, S. S., and Wierwille, W. W. (1993)._Research an vehicle-hased

riv form monitoring. (DTNH 22-91 -Y-07266) Third Semiannual

Research Report. Virginia Polytechnic Institute and State University, Blacksburg,
VA: Department of Industrial and Systems Engineering, Report No. 93-02, April.

198



Ellsworth, L. A.-( 1993)._Experimenta evaluation of subjective ratings of drowsiness and

development of drowsiness definitions. Unpublished masters thesis, Virginia

Polytechnic Institute and State University, Blacksburg, VA.

Endo, Inomata, and Sugiyama (1978). Distinctive EOG characteristics observed during
automobile driving. In'Y. Seko (Trans.), Present technological status of detecting
drowsy driving patterns. Jdosha Giiutsu (Vol. 30, No. 5, pp. 547-554). Centra
Research Institute, Nissan Motor Company.

Erwin, C. W. (1976, February). Studies of drowsiness (Fina report). Durham, North

Carolina: The National Driving Center.
Erwin, C. W., Hartwell, J. W., Volow, and Alberti, G. S. (1976). Electrodermal change asa
predictor of sleep. In Erwin, C. W. (1976, February). Studies of drowsiness (Fina

Report). Durham, North Carolina: The National Driving Center.

Erwin, C. W. (1976, February). Studies of drowsiness (Fina report). Durham, North
Carolina: The National Driving Center.

Erwin, C. W., Hartwell, J. W., Volow, M. R., and Alberti, G. S. (1976). Electrodermal
change as a predictor of sleep. In Erwin, C. W. (1976). Studies of drowsiness (Final
report). Durham, North Carolina: The Nationa Driving Center, (February).

Fairbanks, R. J. and Wierwille, W. W. (1994). Effects of using higher-arder algorithms on

drowsy driver detection accuracy. Virginia Polytechnic Institute and State University,

Blacksburg, VA: Department of Industrial and Systems Engineering, Supplemental

Research Report, October.
Fontana, F. (1765) Dei moti dell’ iride. In C. Guilleminault (Ed.), Sleep and Waking
Disorders: Indications and Technigues. Menlo Park, CA: Addison-Wesley.

Hardee, L. H., Dingus, T. A. and Wierwille, W. W. (1985). A_comparison of three
subsidiary tasks used as driver drowsiness countermeasures. (IEOR Department

Report #8505). Vehicle Simulation Laboratory, Human Factors Group. Virginia
Polytechnic Institute and State University, Blacksburg, Virginia

199



Hauri, P. H. (1982). The deep disorders. (2nd ed.). Kalamazoo, Michigan: Upjohn.

Haworth, N. L., Vulcan, P.,Triggs, T. J. and Fildes, B. N. (1989). Driver fatigue research

Development of methodology. Accident Research Center,Monash University,

Australia

Haworth, N. L. and Vulcan, P. (1990).Testing of commercialy available fatigue monitors.

(Draft Report). Accident Research CenterMonash University, Austraia.
Hiroshige, Y., andNiyata, Y. (1990). Slow eye movements and transition period EEG sleep
stages during daytime deep. InPlanque, S., Chaput, D, Petit, C., and Tarriere, C.

(1991, November 4-7).Analysis of EOG and EEG signals to detect |apses of

alertnessin car simulation driving. Paper presented at the 13th ESV Conference,

Paris, France.
Hulbert, S. F. Blood sugar level and fatigue effects on a simulated driving task. Engineering
report 63-43, UCLA, October, 1963. Cited inHulbert, S. Effects of driver fatigue.

Human Factors in Highway Traffic Research228-302, New Y ork: Wiley, 1972.

Hulbert, S. F. (1972). Effects of driver fatigue. In T. W. Forbes (Ed.Human factorsin

highway traffic safety researchNew Y ork: Wiley and Sons, 1972.

Huntley, M. S., andCentybear, T. M. (1974). Alcohol, sleep deprivation, and driving speed
effects upon control use during driving.Human Factors 16, 19-28.

Kim, C. L., Wreggit, S. S., and Wierwille, W. W. (1994).Research on vehicle-based driver

status/performance monitoring(DTNH 22-91 -Y -07266) Sixth Semiannual Research

Report. Virginia Polytechnic Ingtitute and State University, Blacksburg, VA:
Department of Industria and Systems Engineering, Report No. 94-02, October.

Knipling, R. R., and Wang, J. S. Crashes and fatalities related to driver drowsiness/fatique,

NHTSA Research Note, November. 1994,

Knipling, R. R.. and Wierwille, W. W. (1994, April).Vehicle-based drowsy driver

detection. Current status and future prospects.Paper presented at the IVHS America

Fourth Annual Meeting, Atlanta, Georgia.

200



Knipling, R. R. and Wierwille, W. W. (1993, December 9-10) U. S. IVHS research:

Vehicle-based drowsy driver detection Paper presented at the Vigilance and

Transport Conference,Lyon, France; sponsored by the French National Institute for
Transport and Safety Research (INRETS).
Kurokawa, K. andWierwille, W. W. (1990). Validation of adriving simulation facility for

instrument panel task performance. InProceedings of the 34th Annual Mesting of

the Human Factors Society, (pp. 1299-1303). Santa Monica, CA: Human Factors
Society.

Kuroki, Kitakawa, andOe. (1974). Mental and physical responses as evidenced by the EEG
and cerebral discharge induction potential during driving. InSeko, Y. (1984). Present
technologicd status of detecting drowsy driving patternsJidosha Gijutsu, 30(5), 547-
554. Central Research Ingtitute, Nissan Motor Company.

Laurel, H., andLisper, H. 0. (1978). A validation of subsidiary reaction time against
detection of roadside obstacles during prolonged driving.Ergonomics 21, 8 1-88.

Leonard, J. andWierwille, W. W. (1975). Human performance validation of simulators:

Theory and experimenta verification. |nProceedings of the 19th Annual Meeting of

the Human Factors Society, (pp. 446-456). Santa Monica, CA: Human Factors

Society.

Lisper, H. O., Laurell, H., and Van Loon. J. (1986). Relation between timeto falling asleep
behind the whedl on a closed track and changes in subsidiary RT during prolonged
driving on a motor way. Ergonomics 29, 445-453.

Lowenstein, O., andLoewenfeld, I. (1963). Pupillary movements during acute and chronic
fatigue: A new test for the objective evaluation of tiredness. In CGuilleminault

(Ed.), Seep and Waking Disorders: Indications and TechniquesMenlo Park, CA:

Addison-Wedley.

201



Lowenstein, O., andLoewenfeld, I. (1964). The deep-wake cycle ancbupillary activity. In

C. Guilleminault (Ed.), Sleep and Waking Disorders: Indications and Techniques.

Menlo Park, CA: Addison-Wesley.

Mast, T. M., Jones, H. V., andHeimstra, N. W. (1966). Effects of fatigue on performancein
adriving device. Highway Research Record, 122, 93 (Abridgment). Cited in
Haworth, N. L., Vulcan, P.,Triggs, T. J. and Fildes, B. N. (1989). Driver fatigue

research: Development of methodology Accident Research Center,Monash

University, Australia.

Muto, W. H. and Wierwille, W. W. (1982). The effects of repeated emergency response
trials on performance during extended-duration simulated drivingHuman Factors
24, 693-698.

Office of Crash Avoidance Research (1991). Report No. 4: Drowsy/fatigued driver crashes.
(IVHS/Crash Avoidance Countermeasure-Target Crash Problem Size Assessment and
Statistical Description) Washington, D. C.: NHTSA, OCAR, September.

Ogilvie, R. D., Wilkinson, R. T., and Allison, S. (1989). The detection of sleep onset:
behavioral, physiological, and subjective convergenceSeep, 12(5), 458-474.

Planque, S., Chaput, D, Petit, C., and Tarriere, C. (1991. November 4-7) Analysis of EOG

and EEG signals to detect lapses of alertnessin car simulation drivingPaper

presented at the 13th ESV Conference, Paris, France.
Pan, F. N. (1963). A new method of measuring the effects of continued driving

performance. Highway Research Record,25, 33-57. Cited in Safford, R., and

Rockwell, T. H. ( 1967). Performance decrements in twenty-four hour driving.

Highway Research Record 163, 68-79.

Riemersma, J. B. J., Sanders, A. F.,Wildervanck, C., andGaillard, A. W. (1977).
Performance decrement during prolonged night driving. In R. RMackie (Ed.),

Vigilance: Theory, operationa performance and physiological correlatesto New Y ork

Plenum Press.

202



Ryder, J. M.,Mdlin, S. A., andKindey, C. H. (1981). The effects of fatigue and alcohol on

highway safety National Highway Traffic Safety Administration Report No. DOT-HS-
805-854. Cited in Dingus, T. A., Hardee, L. H. andWierwille, W. W. (1985).

Detection of drowsy and intoxicated drivers based on highway driving performance

measures (IEOR Department Report #8402). Vehicle Simulation Laboratory,
Human Factors Group. Virginia Polytechnic Institute and State University,
Blacksburg, Virginia.

Safford, R., and Rockwell, T. H. (1967). Performance decrements in twenty-four hour

driving. Highway Research Record 163, 68-79.

Santamaria, J., andChiappa, K. H. (1987). The EEG of drowsinessin normal adult. In
Planque, S., Chaput, D, Petit, C., and Tarriere, C. (1991, November 4-7). Anaysis of

EOG and EEG signals to detect lapses of dertnessin car simulation drivingPaper

presented at the 13th ESV Conference, Paris, France.
Seko, Y. (1984). Present technological status of detecting drowsy driving patternslidosha

Gijutsu. 30(5), 547-554. Central Research Institute, Nissan Motor Company.

Skipper, J. H., Wierwille, W. W., andHardee, L. (1984). An investigation of low-level

stimulus-induced measures of driver drowsinesg| EOR Department Report #8402).

Vehicle Simulation Laboratory, Human Factors Group. Virginia Polytechnic Ingtitute

and State University, Blacksburg, Virginia.

Sugarman, R. C., and Cozad, C. P. (1972). Road test of alertness variables(NTIS No. PB-215
450/8). Washington, D. C.: National Highway Traffic Safety Administration, U.
S. Department of Transportation.

Sussman, R. D., Sugarman, R. C., and Knight, J. R. (1971). Use of simulation in a study

investigating aertness during long-distance, low-event drivingHighway Research

Record, 364, 27-32

203



Thorpy, M. J. andLedereich, P. S. (1990). Medical treatment of obstructive sleep apnea. In

M. J. Thorpy (Ed.) Handbook of seep disorders Bronx, New Y ork: MonteFiore

Medical Center and Albert Einstein College of Medicine, 1990.
Tilley, D. H., Erwin, C. W., andGianturco, D. T. (1973). Drowsiness and driving:

Preliminary report of a population survey.Society of Automotive Engineers

International Automotive Engineering Congress, Detroit Michigan, January 8- 12,
Report No. 730121.
Torsvall, L., and Akerstedt, T. (1988). Extreme sleepiness: Quantification of EOG and EEG

parameters. International Journal of Neuros 38, 435-441.

Virginiatraffic crash facts. (1990) Department of Motor Vehicles. Richmond, VA.
Volow, M. R., and Erwin C. W. (1973, January 8-12). The heart rate variability correlated of

spontaneous drowsiness onset. Society of Automotive Engineersl nternational

Automotive Engineering Congress, Detroit, Michigan, January 8-12, Report No.
730124.

Wierwille, W. W. and Muto, W. H. (1981). Significant changesin driver-vehicle response
measures for extended simulated driving tasks. Paper presented at the First European

Annual Conference on Human Decision Making and Manual Control.

Netherlands, May 25-27, 1981, 298-314.

Wierwille, W. W. andEllsworth, L. E. (1992). Research on Vehicle-based Driver

status/performance monitoring (DTNH 22-91 -Y-07266) Second Semiannual

Research Report. Virginia Polytechnic Institute and State University, Blacksburg,
VA: Department of Industrial and Systems Engineering, Report No. 92-05, October.

Wierwille, W. W.,Wreggit. S. S.. and Mitchell, M. W. (1992).Research on vehicle-based

driver status/performance monitoring (DTNH 22-91-Y-07266) First Semiannual

Research Report. Virginia Polytechnic Institute and State University, Blacksburg,

VA: Department of Industrial and Systems Engineering, Report No. 92-01, April.

204



Wreggit, S. S., Kim, C. L., andWierwille, W. W. (1993).Research on vehicle-based driver

status/performance monitoring(DTNH 22-91-Y-07266). Fourth Semiannual

Research Report. Virginia Polytechnic Institute and State University, Blacksburg,
VA: Department of Industrial and Systems Engineering, Report No. 93-06, October.

Wreggit, S. S., Kim, C. L., andWierwille, W. W. (1994).Research on vehicle-based driver

status/performance monitoring (DTNH 22-91-Y-07266) Fifth Semiannual Research

Report. Virginia Polytechnic Ingtitute and State University, Blacksburg, VA:
Department of Industria and Systems Engineering, Report No. 94-01, April.

Wreggit, S. S. and Wierwille, W. W. (1994a).A comparison of R values obtained from the

application of algorithmsto original A/O data, new A/O data, and new clipped A/O

data. Virginia Polytechnic Institute and State University, Blacksburg, VA:
Department of Industrial and Systems Engineering, Supplemental Research Report,

August.

Wreggit, S. S. and Wierwille, W. W. (1994b).An investigation of false alarm rates when

applying detection algorithms to alert-driver segmentsVirginia Polytechnic Ingtitute

and State University, Blacksburg, VA: Department of Industria and Systems
Engineering, Supplemental Research Report, August.

Yabuta, K., lizuka, H., Yanagishima, T., Kataoka. Y., and Seno, T. (1985).The development of

drowsiness warning devices. The Tenth International Technical Conference on

Experimental Safety V ehicles Nissan Motor Company.

205



Appendix A
Regression Summaries and Classification Matrices for Selected Algorithms

(Numbering of algorithmsisthe same asin previous technical reports)
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Regression Summary for Dependent Variable: AVEOBS
R = 0.74732 R2= 0.55849 Adjusted R2 = 0.54791
F(7,292)= 52.768 p < 0.0000 Std. Error of estimate: 16.765

St Err. St Err.
BETA of BETA B of B 1(292) p-level
ntercept 29.060127 1597 18.200 0.000
ACCVAR -0.155 0.068 -1.738049 0.763 -2.278 0.023
INTACDEV| -0.207 0.058 -33.279385 9.389 -3.544 0.000
ACEXEED 0.117 0.050 [290.205383 | 124.826 2.325 0.021
STVELV -0.238 0.089 -0.197639 0.074 -2.670 0.008
LGREV 0.561 0.078 14.484322 2.010 7.207 0.000
MDREV 0.537 0.065 3.120561 0778 8.264 0.000
THRSHLD 0.213 0.044 50.180883 10.407 4.822 0.000
Predicted
Group % Correct Awake | Questionable| Drowsy

Original Awake 93.41 156 6 5

Observed Questionable 18.87 36 10 7

Drowsy 50.00 19 21 40

Total 68.67 211 37 52

AVEOBS (R Vaue=0.747)
Apparent Accuracy Rate (large misclassifications):  0.920
Apparent Accuracy Rate (all misclassifications): 0.687

Classification Matrix Generated From Multiple Regression Analysis of Original AVEOBS
Data Resulting in Algorithm Dla. (Independent variables employed included Steering and
Accelerometer.)

Predicted
Group % Correct Awake |Questionable| Drowsy
New Awake 96.43 189 5 2
Observed Questionablle 12.20 29 5 7
Drowsy 02.7/5 14 5 32
Total 1847 232 15 41

AVEOBS (R Vdue=0.727)
Apparent Accuracy Rate (large misclassifications):  0.944

Apparent Accuracy Rate (all misclassifications): 0.785

Algorithm Dla Applied to New Data and Compared with New Observed AVEOBS Data

Figure Al : Regression Summary and Classification Matrices Showing Accuracy of
Algorithm D 1 aWhen Applied to Original Data and New Data.
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Regresson Summary for Dependent Variable: PERCLOS
R =0.78910 R2= 0.62268 Adjusted R2 = 0.61626
F(5,294) = 97.038 p < 0.0000 Std. Error of estimate: 0.06065

St. Err. St. Err.
BETA | of BETA B of B 1(294) p-level
Intercept 0.014132 0.005 2.974 0.003
INTACDEV -0.134 0.038 -0.084597 0.024 -3.488 0.001
LGREV 0.395 0.050 0.040055 0.005 7.845 0.000
STEXED 0.146 0.042 74.427007 21.231 3.506 0.001
NMRHOLD -0.427 0.054 -0.007378 0.001 -7.985 0.000
THRSHLD 0.450 0.047 0.416209 0.044 9.491 0.000
Predicted

Group % Correct Awake Questionable | Drowsy
Original Awake 88.29 181 22 2
Observed Questionable 43.18 11 19 14

Drowsy 52.94 2 22 27

Total 75.67 194 63 43
PERCLOS (R Vaue =0.789)

Apparent Accuracy Rate (large misclassifications):  0.987

Apparent Accuracy Rate (all misclassifications): 0.757

Classification Matrix Generated From Multiple Regression Analysis of Original PERCLOS
Data Resulting in Algorithm D4a. (Independent variables employed included Steering and

Accelerometer.)
Predicted

Group % Correct Awake | Questionable | Drowsy
New Awake 79.32 188 40 9
Observed Questionable 30.00 8 6 6

Drowsy 90.32 ! ‘2 28

Total 77.08 197 48 43
PERCLOS (R Value = 0.800)

Apparent Accuracy Rate (large misclassifications):  0.965

Apparent Accuracy Rate (all misclassifications): 0.771

Algorithm D4a Applied to New Data and Compared with New Observed PERCL OS Data

Figure A2: Regression Summary and Classification Matrices Showing Accuracy of
Algorithm D4a When Applied to Original Data and New Data.
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Regression Summary for Dependent Variablee MASTER
R =0.80116 R2'= 0.64185 Adjusted R2 = 0.63452

F(6,293) = 87.5 18 p < 0.0000 Std. Errorof estimate: 2.1481

St. Err. St. Err.
BETA of BETA B of B t(293) p-level
Intercept -2.374181 0.206 -11.503 0.000
INTACDEV -0.188 0.038 -4.325066 0.875 -4.942 0.000
LGREV 0.448 0.054 1.651363 0.198 8.340 0.000
MDREV 0.149 0.051 0.123422 | 0.042 2.930 0.004
STEXED 0.090 0.041 1672.678369| 751.930 2.225 0.027
NMRHOLD -0.314 0.054 -0.196918 0.034 -5.821 0.000
THRSHLD 0.357 0.047 11.974089 1579 7.582 0.000
Predicted

Group % Correct Awake | Questionable| Drowsy
Original Awake 93.53 188 10 3
Observed Questionable 33.33 14 14 14

Drowsy 52.63 3 . 24 30

Total 77.33 205 48 47

MASTER (R Vaue=0.801)
Apparent Accuracy Rate (large misclassifications):  0.980
Apparent Accuracy Rate (all misclassifications): 0.773

Classification Matrix Generated From Multiple Regression Analysis of Original MASTER
Data Resulting in Algorithm D5a. (Independent variables employed included Steering and
Accelerometer.)

Predicted
Group % Correct Awake Questionable|  Drowsy
New Awake 93.52 202 10 _ 4 1
Observed Questionable 25.93 16 7 4
Drowsy 80.00 4 5 36
Total 85.07 222 22 44

MASTER (R Value = 0.837)
Apparent Accuracy Rate (largemisclassifications):  0.972
Apparent Accuracy Rate (all misclassifications): 0.851

Algorithm D5a Applied to New Data and Compared with New Observed MASTER Data

Figure A3 : Regression Summary and Classification Matrices Showing Accuracy of
Algorithm D5a When Applied to Original Data and New Data.
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Regresson Summary for Dependknt Variable: PERCLOS
R = 0.84691010 R2 = 0.71725672 Adjusted R2 = 0.71244816
F(5,294) = 149.16 p < 0.0000 Std. Error of estimate: 0.05250

St. Err. St. Err.

BETA of BETA B of B t(294) p-level
Intercept -0.000348 0.004 -0.078 0.938
ACCVAR -0.128 0.035 -0.005646 0.002 -3.615 0.000
HPHDGDE 0.616 0.045 0.182652 0.013 13.600 0.000
STEXED - 0.112 0.035 56.959348 18.000 3.164 0.002
NMRHOLD -0.296 0.048 -0.005112 0.001 -6.154 0.000
THRSHLD 0.320 | 0.043 0.295479 0.040 | 7.463 | 0.000

Note: classification matrices not developed for this algorithm.

Figure A4: Regression Summary for Algorithm E4a
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Regression Summary for Dependent Variable: AVEOBS

R = 0.82577937 R2 = 0.68191157 Adjusted R2 = 0.67428617
F(7,292) = 89.426 p <0.0000 Std. Error of estimate: 14.230

St. Err. St. Err.

BETA of BETA B of B 1(292) p-level
Intercept 25.645817 1.390 18.457 0.000
ACCDEV -0.350 0.045 -14.565780 1.874 -7.773 0.000
ACEXEED 0.099 0.039 246.164352| 95.978 2.565 0.011
LANDEV 1.142 0.079 21.903765 1.516 14.450 0.000
LNERRSQ -0.667 0.065 -1.300765 0.127 -10.229 0.000
STVELV -0.146 0.064 -0.121066 0.053 -2.268 0.024
MDREV 0.503 0.059 2.919365 0.343 8.517 0.000
THRSHLD 0.128 0.038 30.226578 9.054 3.339 0.001

Note: classification matrices not developed for this algorithm.

Figure A5: Regression Summary for AlgorithmFl a
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Regression Summary for Dependent Variablee EYEMEAS
R =0.83700489' R2 = 0.70057719 Adjusted R2 = 0.69339924
F(7,292) = 97.601 p < 0.0000 Std. Error of estimate: 768.40

St. Err. St. Err.
BETA of BETA B of B 1(292) p-level
Intercept 967.482741 | 73.780 13.113 0.000
ACCDEV -0.336 0.042 -779.208055| 97.170 -8.019 0.000
LNMNSQ -0.372 0.084 -28.996034 6.559 -4.421 0.000
LANDEV 0.738 0.120 787.576776 | 127.703 6.167 0.000
LANEX 0.269 0.063 3048.878638| 709.593 4.297 0.000
STVELV 0.157 0.062 7.247299 2.854 2.540 0.012
MDREV 0.230 0.057 74.233060 18.585 3.994 0.000
THRSHLD 0.140 0.038 1828.608058| 493.389 3.706 0.000
Predicted

Group % Correct Awake | Questionable| Drowsy
Original Awake 90.10 182 12 8
Observed Questionable 10.00 9 2 9

Drowsy 64.10 n 17 50

Tota 78.00 202 31 67

EYEMEAS (R Vaue = 0.837
Apparent Accuracy Rate (large misclassifications):  0.963
Apparent Accuracy Rate (all misclassifications): 0.780

Classification Matrix Generated From Multiple Regression Analysis of Original
EYEMEAS Data Resulting in Algorithm F2a. (Independent variables employed included
Steering, Accelerometer, LANDEVNAR, LNMNSQ. LANEX, & LNERRSQ.)

Predicted
Group % Correct Awake | Questionable | Drowsy
New Awake 95.51 134 7 4
Observed Questionable 12.50 0 1 7
Drowsy 7143 3 7 25
Total 90.28 237 15 36

EYEMEAS (R Vaue = 0.838)
Apparent Accuracy Rate (large misclassifications):  0.976
Apparent Accuracy Rate (all misclassifications): 0.903

Algorithm F2a Applied to New Data and Compared with New Observed EYEMEAS Data

Figure A6: Regression Summary and Classification Matrices Showing Accuracy of
Algorithm F2a When Applied to Original Data and New Data.
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Regresson Summary for Dependent Variable: NEWDEF
R =0.73127598" R2 = 0.53476456 Adjusted R2 = 0.52845628
F(4,295) = 84.772 p < 0.0000 Std. Error of estimate: 1.1789

St. Err. St. Err.
BETA of BETA B of B t(295) p-level
Intercept -0.518427 0.090 -5.740 0.000
INTACDEV| -0.153 0.042 -1.693902 0.463 -3.660 0.000
LANVAR 0.255 0.055 0.03189%4 0.007 4.660 0.000
LANEX 0.350 0.057 4908173 0.803 6.109 0.000
STVELV 0.250 0.052 0.014324 0.003 4.802 0.000
Predicted

Group % Correct Awake | Questionable| Drowsy
Original Awake 83.42 161 26 6
Observed Questionable 35.29 25 18 8

Drowsy 62.50 8 13 34

Totd 71.33 194 57 49
NEWDEF (R Vdue = 0.73 1)

Apparent Accuracy Rate (large misclassifications):  0.953

Apparent Accuracy Rate (all misclassifications): 0.713

Classification Matrix Generated From Multiple Regression Analysis of Original NEWDEF
Data Resulting in Algorithm F3a. (Independent variables employed included Steering,
Accelerometer, LANDEVNAR, LNMNSQ, LANEX, & LNERRSQ.)

New
Observed

NEWDEF (R Vaue = 0.8 19)

Predicted

Group % Correct Awake | Questionable Drowsy
Awake 93.36 197 13 1
Questionable 26.19 23 11 8
Drowsy 85.71 1 4 30
Total 82.64 221 28 39
Apparent Accuracy Rate (large misclassifications):  0.993

Apparent Accuracy Rate (all misclassifications): 0.826

Algorithm F3a Applied to New Data and Compared with New Observed NEWDEF Data

Figure A7: Regression Summary and Classification Matrices Showing Accuracy of
AlgorithmF3a When Applied to Original Data and New Data.
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Regresson Summary for Dependent Variable: PERCLOS
R = 0.87159526' R2 = 0.75967830 Adjusted R2 = 0.75475703

F(6,293) = 154.37 p< 0.0000 Std. Error of estimate: 0.04849

St. Err. St. Err.
BETA of BETA B of B t(293) p-level
Intercept -0.003 0.004053 -0.694 0.488
INTACDEV | -0.109 0.030 -0.069 0.019114 -3.603 0.000
LANDEV 0.873 0.063 0.066 0.004763 13.798 0.000
LNERRSQ -0.258 0.054 -0.002 0.000410 -4.820 0.000
STEXED 0.090 0.033 45740 | 16.818827 2.720 0.007
NMRHOLD -0.204 0.045 -0.004 0.000785 | -4.494 0000
THRSHLD 0.250 0.041 0231 0.037904 6.098 0.000
Predicted

Group % Correct Awake | Questionable| Drowsy
Original Awake 89.76 184 18 3
Observed Questionable 47.73 7 21 16

Drowsy 62.75 3 16 32

Totd 79.00 194 55 51
PERCLOS (R Vaue = 0.872)

Apparent Accuracy Rate (large misclassifications):  0.980

Apparent Accuracy Rate (all misclassifications): 0.790

Classification Matrix Generated From Multiple Regression Analysis of Original PERCLOS
Data Resulting in Algorithm F4a. (Independent variables employed included Steering,
Accelerometer, LANDEVNAR, LNMNSQ, LANEX, & LNERRSQ.)

New
Observed

PERCLOS (R Vaue = 0.862)

Predicted

Group % Correct Awake | Questionable| Drowsy
Awake 89.03 211 22 4
Questionable 15.00 12 5
Drowsy 80.65 3 3 25
Total 82.99 226 28 34
Apparent Accuracy Rate (large misclassifications):  0.976

Apparent Accuracy Rate (all misclassifications): 0.830

Algorithm F4a Applied to ‘New Data and Compared with New Observed PERCL OS Data

Figure A8: Regression Summary and Classification Matrices Showing Accuracy of
Algorithm F4a When Applied to Original Data and New Data.
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Regression Summary for Dkpendent Variablee MASTER
R = 0.88641410 R2 = 0.78572996 Adjusted R2 = 0.77908020

F(9,290)=118.16 p <0:0000 Std. Error of estimate: 1.6701

[ St.Em. | St. Err. | !
‘BETZ. . of BETA B of B £(290) p-level
Intercept -2.982588 0.170 -17.551 0.000
ACCVAR -0.163 0.047 -0.259953 0.075 -3.466 0.001
INTACDEV -0.091 0.042 -2.087452 0.972 -2.147 0.033
LANDEV 0.757 0.101 2.069666 0.275 7.515 0.000
LANEX 0.174 0.059 5.049306 1.719 2.938 6.004
LNERRSQ -0.298 0.06] -0.082919 0.017 -4.886 0.000
STVELV 0.116 0.052 0.013713 0.006 2.205 0.028
MDREV 0.161 0.049 0.133662 0.040 3.307 0.001
NMRHOLD -0.100 0.046 -0.062747 0.029 -2.189 0.029
THRSHLD 0.168 0.039 5.636318 1.315 4.287 0.000
Predicted

Group % Correct Awake Questionable| Drowsy
Original Awake 94.53 190 9 2
Observed Questionableg 45.24 9 19 14

Drowsy 71.93 3 13 41

Tota 83.33 202 41 57

MASTER (R Value = 0.886)

Apparent Accuracy Rate (large misclassifications):  0.983
Apparent Accuracy Rate (all misclassifications): 0.833

Classification Matrix Generated From Multiple Regression Analysis of Original
MASTER Data Resulting in Algorithm F5a. (Independent variables employed included
Steering, Accelerometer, LANDEVNAR, LNMNSQ, LANEX, & LNERRSQ.)

Predicted
Group % Correct Awake | Questionable| Drowsy
New Awake 96.76 209 5 2
Observed Questionable 18.52 22 5 0
Drowsy 62.22 6 11 28
Total 84.03 237 21 30

MASTER (R Value = 0.885)
Apparent Accuracy Rate (large misclassifications):  0.972
Apparent Accuracy Rate (al misclassifications): 0.840
Algorithm F5a Applied to New Data and Compared with New Observed MASTER

Data

Figure A9: Regression Summary and Classification Matrices Showing Accuracy of
Algorithm F5a When Applied to Original Data and New Data.
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Regresson Summary for Dependent Variable: PERCLOS
R=0.80983889 R2 = 0.65583902 Adjusted R2 = 0.64508399
F(3,96) = 60.980 p < 0.00000 Std.Error of estimate: 0.05334

St. Err. St. Err.
BETA | of BETA B of B t(96) p-level
Intercept 0.002801 | 0.008 0.362 0.718
AOTIME 1.588 0.186 |0.113237] 0.013 8.551 0.000
NMWRONG | -1.215 0.192 |-0.297367| 0.047 -6.338 0.000
NMNR 0.358 0.092 10.160588 | 0.041 3.899 0.000

Note: Classification matrix not developed for original datafor this agorithm.

New
Observed

Predicted
Group % Correct Awake Questionable Drowsy
Awake 95.83 115 3 2
Questionable 36.36 6 4 1
Drowsy 23.08 8 2 3
Total 84.72 129 9 6

PERCLOS (R Value = 0.447)
Apparent Accuracy Rate (large misclassifications):
Apparent Accuracy Rate (all misclassifications):

Algorithm 14a Applied to New Data and Compared with New Observed PERCL OS Data

0931
0.847

Figure Al 0: Regression Summary and Classification Matrix Showing Accuracy of
Algorithm 14a When Applied to New Data.




Regresson Summary for Dependent Variable: PERCLOS
R = 0.83585799 ‘R2 = 0.69865857 Adjusted R2 = 0.68262977
F(5,94) = 43.588 p < 0.00000 Std.Error of estimate: 0.05044

St. Err. St. Err.
BETA |of BETA B of B t(94) p-level
Intercept 0.002620 | 0.008 0.341 0.734
ACCVAR -0.182 0.064 |-0.007485] 0.003 -2.843 0.005
LGREV 0.302 0.093 |0.031048 | 0.010 3.259 0.002
AOTIME 1.234 0.211 }0.087985 | 0.015 5.839 0.000
NMWRONG | -1.028 0.199 |[-0.251580{ 0.049 -5.173 0.000
NMNR 0.313 0.092 |0.140206 | 0.041 3.419 0.001
Predicted

Group % Correct Awake Questionable| Drowsy
Original Awake 94.29 66 3 1
Observed Questionable 43.75 2 7 7

Drowsy 42.86 2 6 6

Totd 79.00 70 16 14
PERCLOS (R Value = 0.836)

Apparent Accuracy Rate (large misclassifications):  0.970

Apparent Accuracy Rate (all misclassifications): 0.790

Classification Matrix Generated From Multiple Regression Analysis of Original
PERCL OS Data Resulting in Algorithm J4a. (Independent variables employed

included A/O Task, Steering, and Accelerometer.)

Predicted
Group % Correct Awake | Questionable| Drowsy
New Awake 93.33 112 6 2
Observed Questionable 21.27 6 3 2
Drowsy 38.46 4 4 5
Total 83.33 122 13 9

PERCLOS (R Vaue = 0.599)
Apparent Accuracy Rate (large misclassifications):
Apparent Accuracy Rate (all misclassifications):

0.958
0.833

Algorithm J4da Applied to New Data and Compared with New Observed PERCL OS Data

Figure A11: Regression Summary and Classification Matrices Showing Accuracy of
Algorithm Ja When Applied to Original Data and New Data.
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Regresson Summary for Dependent Variable: PERCLOS
R=0.874877 17 R2=0.76541006 Adjusted R2 = 0.75027522
F(6,93) = 50.573 p< 0.00000 Std.Error of estimate: 0.04474

St. Err. St. Err.

BETA |of BETA B of B t(93) p-level
Intercept -0.004308 | 0.007 | -0.648 0.519
LANVAR 0.924 0.246 | 0.009506 | 0.003 3.749 0.000
LANEX 0.310 0.105 | 0.195697 | 0.066 2.964 | 0.004
LNERRSQ -0.641 0.174 | -0.007871 | 0.002 | -3.683 0.000
AOTIME 0.548 0.236 | 0.039067 | 0.017 2.326 0.022
NMWRONG | -0.591 0.197 | -0.144499 | 0.048 | -3.002 | 0.003
NMNR 0.286 0.095 | 0.127975 | 0.042 3.014 0.003

Note: Classification matrix not developed for original data for this algorithm.

Predicted
Group % Correct Awake [ Questionable| Drowsy
New Awake 94.17 113 5 2
Observed Questionable 54.55 3 6 2
Drowsy 46.15 1 6 6
Totd 86.81 117 17 10

PERCLOS (R Vaue = 0.796)
Apparent Accuracy Rate (large misclassifications):  0.979

Apparent Accuracy Rate (all misclassifications): 0.868

Algorithm L3a Applied to New Data and Compared with New Observed PERCLOS

Figure A12: Regression Summary and Classification Matrix Showing Accuracy of,
Algorithm L3aWhen Applied to New Data.
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Regresson Summary for Dependent Variable: MASTER
R = 0.93610768 R2 = 0.87629758 Adjusted R2 = 0.86542265
F(8,91) = 80.580 p < 0.00000 Std.Error of estimate: 1.3 177

St Err. St Err.
BETA |of BETA| B of B t(91) p-level
| ntercept -3.437881 0.232 | -14.806 | 0.000

ACCDEV -0.185 | 0.043 |-1.13798¢4 0.264 | -4313 | 0.000
LANDEV 0.847 0.139 |2.583602| 0.425 6.077 0.000

LANEX 0.368 0.09 9.328965 2.430 , 3.840 , 0.000
LNERRSQ -0.455 | 0.081 |-0.224128| 0.040 | -5.622 | 0.000
THRSHLD 0.133 0.044 | 5.008195 | 1.659 | 3.019 | 0.003

ANTIVNAT n sno N 101 1 ALLANL NnNs1n N onNng n NN«

AU LIVIE U.ouy U.1061l 1.4020430 U.Jal17 L.0U0 U.uuvo
NMWRONG | -0.572 0.149 |-5.613958| 1.466 | -3.828 0.000
NMNR 0192 | 0.074 3458096 1332 | 2597 | 0.011
Predicted
Group % Correct Awake | Questionable| Drowsy
Original Awake 95.59 65 3 0
Observed Questionable 50.00 3 7 4
Drowsy 72.22 0 5 13
Totd 85.00 68 15 17

MASTER (R Vaue = 0.936)
Apparent Accuracy Rate (largemisclassifications): 1 .000
Apparent Accuracy Rate (all misclassifications): 0.850

Classification Matrix Generated From Multiple Regression Anaysis of Original
MASTER Data Resulting in Algorithm M3a. (Independent variables employed included
A/O Task, Steering, Accelerometer, LANDEVNAR, LNMNSQ, LANEX, & LNERRSQ.)

Predicted
Group % Correct Awake | Questionable | Drowsy
New Awake 100.00 108 0 0
Observed Questionable 0.00 13 0 0
Drowsy 30.43 8 8 7
Totd 79.86 129 8 7

MASTER (R Vaue = 0.845)
Apparent Accuracy Rate (largemisclassifications):  0.944
Apparent Accuracy Rate (all misclassifications): 0.799

Algorithm M3a Applied to New Data and Compared with New Observed MASTER Data

Figure Al 3: Regression Summary and Classification Matrices Showing Accuracy of
AlgorithmM3aWhen Applied to Original Data and New Data.
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